516 lines
16 KiB
C
516 lines
16 KiB
C
/**
|
|
* Routines for drawing patterns generated by fixed point math functions.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include "../config.h"
|
|
#include "../pixel.h"
|
|
#include "../util.h"
|
|
#include "fpmath_patterns.h"
|
|
|
|
/**
|
|
* \defgroup fixedpoint Fixed-point based animated plasma patterns.
|
|
*/
|
|
/*@{*/
|
|
|
|
/**
|
|
* Double buffering helps in reducing the effect of visibly redrawing every
|
|
* frame. With this option turned on, a frame is rendered into an off-screen
|
|
* buffer first and then copied to the actual frame buffer in one piece.
|
|
* However, given the borg's graphics architecture, half painted frames may
|
|
* still occur, but they are barely noticeable with this option enabled.
|
|
*
|
|
* Turn this off (#undef DOUBLE_BUFFERING) if you prefer speed over beauty.
|
|
*/
|
|
#define DOUBLE_BUFFERING
|
|
|
|
|
|
#ifdef LOW_PRECISION
|
|
#undef LOW_PRECISION
|
|
#endif
|
|
|
|
#if NUM_COLS <= 16 && NUM_ROWS <= 16
|
|
/**
|
|
* Low precision means that we use Q10.5 values and 16 bit types for almost
|
|
* every calculation (with multiplication and division as notable exceptions
|
|
* as they and their interim results utilize 32 bit).
|
|
*
|
|
* Use this precision mode with care as image quality will suffer
|
|
* noticeably. It produces leaner and faster code, though. This mode should
|
|
* not be used with resolutions higher than 16x16 as overflows are likely to
|
|
* occur in interim calculations.
|
|
*
|
|
* Normal precision (i.e. #undef LOW_PRECISION) conforms to Q7.8 with the
|
|
* ability to store every interim result as Q23.8. Most operations like
|
|
* square root, sine, cosine, multiplication etc. utilize 32 bit types.
|
|
*/
|
|
#define LOW_PRECISION
|
|
#endif
|
|
|
|
#ifdef LOW_PRECISION
|
|
/** This is the type we expect ordinary integers to be. */
|
|
typedef int16_t ordinary_int_t;
|
|
/** This is the type which we use for fixed point values. */
|
|
typedef int16_t fixp_t;
|
|
/** This type covers arguments of fixSin() and fixCos(). */
|
|
typedef int16_t fixp_trig_t;
|
|
/** This type covers interim results of fixed point operations. */
|
|
typedef uint32_t fixp_interim_t;
|
|
/** This type covers interim results of the fixed point sqrt() function. */
|
|
typedef uint16_t ufixp_interim_t;
|
|
/** Amount of bits the fixed point sqrt() function can handle. */
|
|
#define SQRT_BITS 16
|
|
|
|
// NOTE: If you change the following values, don't forget to adapt the sine
|
|
// lookup table as well!
|
|
|
|
/** Multiply a number by this factor to convert it to a fixed point value.*/
|
|
#define FIX 32
|
|
/** Amount of fractional bits of a value (i.e. ceil(log_2(FIX))). */
|
|
#define FIX_FRACBITS 5
|
|
/**
|
|
* The amount of temporal quantization steps of the sine lookup table. It
|
|
* must be a divisor of (FIX * 2 * pi) and this divisor must be divisable by
|
|
* 4 itself. Approximate this value as close as possible to keep rounding
|
|
* errors at a minimum.
|
|
*/
|
|
#define FIX_SIN_COUNT 200
|
|
/** The rounded down quotient of (FIX * 2 * pi) and FIX_SIN_COUNT */
|
|
#define FIX_SIN_DIVIDER 1
|
|
|
|
/** Type of the lookup table elements. */
|
|
typedef uint8_t lut_t;
|
|
|
|
/**
|
|
* Lookup table of fractional parts which model the first quarter of a
|
|
* sine period. The rest of that period is calculated by mirroring those
|
|
* values. These values are intended for Q5 types.
|
|
*/
|
|
static lut_t const fix_sine_lut[FIX_SIN_COUNT / 4] =
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7,
|
|
8, 9, 10, 11, 12, 13, 14, 15,
|
|
15, 16, 17, 18, 19, 20, 20, 21,
|
|
22, 22, 23, 24, 24, 25, 26, 26,
|
|
27, 27, 28, 28, 29, 29, 29, 30,
|
|
30, 30, 31, 31, 31, 31, 31, 31,
|
|
31, 31};
|
|
#else
|
|
/** This is the type we expect ordinary integers to be. */
|
|
typedef int16_t ordinary_int_t;
|
|
/** This is the type which we use for fixed point values. */
|
|
typedef int16_t fixp_t;
|
|
/** This type covers arguments of fixSin() and fixCos(). */
|
|
typedef int32_t fixp_trig_t;
|
|
/** This type covers interim results of fixed point operations. */
|
|
typedef int32_t fixp_interim_t;
|
|
/** This type covers interim results of the fixed point sqrt() function. */
|
|
typedef uint32_t ufixp_interim_t;
|
|
/** Amount of bits the fixed point sqrt() function can handle. */
|
|
#define SQRT_BITS 32
|
|
|
|
// NOTE: If you change the following values, don't forget to adapt the sine
|
|
// lookup table as well!
|
|
|
|
/** Multiply a number by this factor to convert it to a fixed point value.*/
|
|
#define FIX 256
|
|
/** Amount of fractional bits of a value (i.e. ceil(log_2(FIX))). */
|
|
#define FIX_FRACBITS 8
|
|
/**
|
|
* The amount of temporal quantization steps of the sine lookup table. It
|
|
* must be a divisor of (FIX * 2 * pi) and this divisor must be divisable by
|
|
* 4 itself. Approximate this value as close as possible to keep rounding
|
|
* errors at a minimum.
|
|
*/
|
|
#define FIX_SIN_COUNT 200
|
|
/** The rounded down quotient of (FIX * 2 * pi) and FIX_SIN_COUNT */
|
|
#define FIX_SIN_DIVIDER 8
|
|
|
|
/** Type of the lookup table elements. */
|
|
typedef uint8_t lut_t;
|
|
|
|
/**
|
|
* Lookup table of fractional parts which model the first quarter of a
|
|
* sine period. The rest of that period is calculated by mirroring those
|
|
* values. These values are intended for Q8 types.
|
|
*/
|
|
static lut_t const fix_sine_lut[FIX_SIN_COUNT / 4] =
|
|
{ 0, 9, 17, 24, 32, 40, 48, 56,
|
|
64, 72, 79, 87, 94, 102, 109, 116,
|
|
123, 130, 137, 144, 150, 157, 163, 169,
|
|
175, 181, 186, 192, 197, 202, 207, 211,
|
|
216, 220, 224, 228, 231, 235, 238, 240,
|
|
243, 245, 247, 249, 251, 252, 253, 254,
|
|
255, 255};
|
|
|
|
#endif
|
|
|
|
|
|
/** The ordinary pi constant. */
|
|
#define PI 3.14159265358979323846
|
|
/** Fixed point version of (pi / 2). */
|
|
#define FIX_PI_2 ((fixp_t)(PI * FIX / 2))
|
|
/** Fixed point version of pi. */
|
|
#define FIX_PI ((fixp_t)(PI * FIX))
|
|
/** Fixed point version of (2 * pi). */
|
|
#define FIX_2PI ((fixp_t)(2 * PI * FIX))
|
|
|
|
|
|
/**
|
|
* Scales an ordinary integer up to its fixed point format.
|
|
* @param a an ordinary integer to be scaled up
|
|
* @return The given value in fixed point format.
|
|
*/
|
|
inline static fixp_t fixScaleUp(ordinary_int_t a)
|
|
{
|
|
return (fixp_t)a * FIX;
|
|
}
|
|
|
|
|
|
/**
|
|
* Scales a fixed point value down to an ordinary integer (omitting the
|
|
* fractional part).
|
|
* @param a fixed point value to be scaled down
|
|
* @return The given value in fixed point format.
|
|
*/
|
|
inline static ordinary_int_t fixScaleDown(fixp_t const a)
|
|
{
|
|
return a / FIX;
|
|
}
|
|
|
|
|
|
/**
|
|
* Multiplies two fixed point values.
|
|
* @param a operand a
|
|
* @param b operand b
|
|
* @return Product of a and b.
|
|
*/
|
|
inline static fixp_interim_t fixMul(fixp_t const a, fixp_t const b)
|
|
{
|
|
return ((fixp_interim_t)a * (fixp_interim_t)b) / FIX;
|
|
}
|
|
|
|
|
|
/**
|
|
* Divides two fixed point values.
|
|
* @param a operand a
|
|
* @param b operand b
|
|
* @return Quotient of a and b.
|
|
*/
|
|
inline static fixp_t fixDiv(fixp_interim_t const a, fixp_interim_t const b)
|
|
{
|
|
return (a * FIX) / b;
|
|
}
|
|
|
|
|
|
/**
|
|
* Fixed point variant of the sine function which receives a fixed point angle
|
|
* (radian). It uses a lookup table which models the first quarter of a full
|
|
* sine period and calculates the rest from that quarter.
|
|
* @param angle fixed point radian value
|
|
* @return Result of the sine function normalized to a range from -FIX to FIX.
|
|
*/
|
|
static fixp_t fixSin(fixp_t fAngle)
|
|
{
|
|
// convert given fixed-point angle to its corresponding quantization step
|
|
int8_t nSign = 1;
|
|
if (fAngle < 0)
|
|
{
|
|
// take advantage of sin(-x) == -sin(x) to avoid neg. operands for "%"
|
|
fAngle = -fAngle;
|
|
nSign = -1;
|
|
}
|
|
uint8_t nIndex = (fAngle / FIX_SIN_DIVIDER) % FIX_SIN_COUNT;
|
|
|
|
// now convert that quantization step to an index of our quartered array
|
|
if ((nIndex >= (FIX_SIN_COUNT / 4)))
|
|
{
|
|
if (nIndex < (FIX_SIN_COUNT / 2))
|
|
{
|
|
nIndex = (FIX_SIN_COUNT / 2 - 1) - nIndex;
|
|
}
|
|
else
|
|
{
|
|
// an angle > PI means that we have to toggle the sign of the result
|
|
nSign *= -1;
|
|
if (nIndex < (FIX_SIN_COUNT - (FIX_SIN_COUNT / 4)))
|
|
{
|
|
nIndex = nIndex - (FIX_SIN_COUNT / 2);
|
|
}
|
|
else
|
|
{
|
|
nIndex = (FIX_SIN_COUNT - 1) - nIndex;
|
|
}
|
|
}
|
|
}
|
|
assert(nIndex < (FIX_SIN_COUNT / 4));
|
|
|
|
return ((fixp_t)fix_sine_lut[nIndex]) * nSign;
|
|
}
|
|
|
|
|
|
/**
|
|
* Fixed point variant of the cosine function which takes a fixed point angle
|
|
* (radian). It adds FIX_PI_2 to the given angle and consults the fixSin()
|
|
* function for the final result.
|
|
* @param angle fixed point radian value
|
|
* @return Result of the cosine function normalized to a range from -FIX to FIX.
|
|
*/
|
|
static fixp_t fixCos(fixp_t const angle)
|
|
{
|
|
return fixSin(angle + FIX_PI_2);
|
|
}
|
|
|
|
|
|
/**
|
|
* Fixed point square root algorithm as proposed by Ken Turkowski:
|
|
* http://www.realitypixels.com/turk/computergraphics/FixedSqrt.pdf
|
|
* @param radicant we want the square root of
|
|
* @return The square root of the given value.
|
|
*/
|
|
static fixp_t fixSqrt(ufixp_interim_t const a)
|
|
{
|
|
ufixp_interim_t nRoot, nRemainingHigh, nRemainingLow, nTestDiv, nCount;
|
|
nRoot = 0; // clear root
|
|
nRemainingHigh = 0; // clear high part of partial remainder
|
|
nRemainingLow = a; // get argument into low part of partial remainder
|
|
nCount = (SQRT_BITS / 2 - 1) + (FIX_FRACBITS >> 1); // load loop counter
|
|
do
|
|
{
|
|
nRemainingHigh =
|
|
(nRemainingHigh << 2) | (nRemainingLow >> (SQRT_BITS - 2));
|
|
nRemainingLow <<= 2; // get 2 bits of the argument
|
|
nRoot <<= 1; // get ready for the next bit in the root
|
|
nTestDiv = (nRoot << 1) + 1; // test radical
|
|
if (nRemainingHigh >= nTestDiv)
|
|
{
|
|
nRemainingHigh -= nTestDiv;
|
|
nRoot++;
|
|
}
|
|
} while (nCount-- != 0);
|
|
return (nRoot);
|
|
}
|
|
|
|
|
|
/**
|
|
* Calculates the distance between two points.
|
|
* @param x1 x coordinate of the first point
|
|
* @param y1 y coordinate of the first point
|
|
* @param x2 x coordinate of the second point
|
|
* @param y2 y coordinate of the second point
|
|
* @return The distance between the given coordinates.
|
|
*/
|
|
static fixp_t fixDist(fixp_t const x1,
|
|
fixp_t const y1,
|
|
fixp_t const x2,
|
|
fixp_t const y2)
|
|
{
|
|
return fixSqrt(fixMul((x1 - x2), (x1 - x2)) + fixMul((y1 - y2), (y1 - y2)));
|
|
}
|
|
|
|
|
|
/**
|
|
* This pointer type covers functions which return a brightness value for the
|
|
* given coordinates and a "step" value. This actually results in a more or less
|
|
* "beautiful" pattern.
|
|
* @param x x-coordinate
|
|
* @param y y-coordinate
|
|
* @param t step value which changes for each frame, allowing for animations
|
|
* @param r pointer to persistent data required by the pattern function
|
|
* @return The brightness value (0 < n <= NUM_PLANES) of the given coordinate.
|
|
*/
|
|
typedef unsigned char (*fpmath_pattern_func_t)(unsigned char const x,
|
|
unsigned char const y,
|
|
fixp_t const t,
|
|
void *const r);
|
|
|
|
#ifdef DOUBLE_BUFFERING
|
|
# define BUFFER pixmap_buffer
|
|
#else
|
|
# define BUFFER pixmap
|
|
#endif
|
|
|
|
|
|
/**
|
|
* Draws an animated two dimensional graph for a given function f(x, y, t).
|
|
* @param t_start start value for the function's step variable
|
|
* @param t_stop stop value for the function's step variable
|
|
* @param t_delta value by which the function's step variable gets incremented
|
|
* @param frame_delay frame delay in milliseconds
|
|
* @param fpPattern function which generates a pattern depending on x, y and t
|
|
* @param r pointer to persistent data required by the fpPattern function
|
|
*/
|
|
static void fixPattern(fixp_t const t_start,
|
|
fixp_t const t_stop,
|
|
fixp_t const t_delta,
|
|
int const frame_delay,
|
|
fpmath_pattern_func_t fpPattern,
|
|
void *r)
|
|
{
|
|
#ifdef DOUBLE_BUFFERING
|
|
// double buffering to reduce half painted pictures
|
|
unsigned char pixmap_buffer[NUMPLANE][NUM_ROWS][LINEBYTES];
|
|
#endif
|
|
|
|
for (fixp_t t = t_start; t < t_stop; t += t_delta)
|
|
{
|
|
for (unsigned char y = 0; y < NUM_ROWS; ++y)
|
|
{
|
|
unsigned char nChunk[NUMPLANE + 1][LINEBYTES] = {{0}};
|
|
for (unsigned char x = 0; x < (LINEBYTES * 8); ++x)
|
|
{
|
|
assert (y < 16);
|
|
nChunk[fpPattern(x, y, t, r) - 1][x / 8u] |= shl_table[x % 8u];
|
|
}
|
|
for (unsigned char p = NUMPLANE; p--;)
|
|
{
|
|
for (unsigned char col = LINEBYTES; col--;)
|
|
{
|
|
nChunk[p][col] |= nChunk[p + 1][col];
|
|
BUFFER[p][y][col] = nChunk[p][col];
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DOUBLE_BUFFERING
|
|
memcpy(pixmap, pixmap_buffer, sizeof(pixmap));
|
|
#endif
|
|
|
|
wait(frame_delay);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef ANIMATION_PLASMA
|
|
|
|
/**
|
|
* This type maintains values relevant for the Plasma animation which need to be
|
|
* persistent over consecutive invocations.
|
|
*/
|
|
typedef struct fixp_plasma_s
|
|
{
|
|
fixp_t fFunc1[NUM_COLS]; /**< Result of 1st trig. func. depending on x. */
|
|
fixp_t fFunc2CosArg; /**< Arg. of 2st trig. func. depending on the frame. */
|
|
fixp_t fFunc2SinArg; /**< Arg. of 2st trig. func. depending on the frame. */
|
|
} fixp_plasma_t;
|
|
|
|
|
|
/**
|
|
* Draws a plasma like pattern (sort of... four shades of grey are pretty
|
|
* scarce for a neat plasma animation).
|
|
* @param x x-coordinate
|
|
* @param y y-coordinate
|
|
* @param t step value which changes for each frame, allowing for animations
|
|
* @param r pointer to persistent interim results
|
|
* @return The brightness value (0 < n <= NUM_PLANES) of the given coordinate.
|
|
*/
|
|
static unsigned char fixAnimPlasma(unsigned char const x,
|
|
unsigned char const y,
|
|
fixp_t const t,
|
|
void *const r)
|
|
{
|
|
assert(x < NUM_COLS);
|
|
assert(y < NUM_ROWS);
|
|
|
|
// scaling factor
|
|
static fixp_t const fPlasmaX = (2 * PI * FIX) / NUM_COLS;
|
|
|
|
// reentrant data
|
|
fixp_plasma_t *const p = (fixp_plasma_t *)r;
|
|
|
|
if (x == 0 && y == 0)
|
|
{
|
|
p->fFunc2CosArg = NUM_ROWS * fixCos(t) + fixScaleUp(NUM_ROWS);
|
|
p->fFunc2SinArg = NUM_COLS * fixSin(t) + fixScaleUp(NUM_COLS);
|
|
}
|
|
if (y == 0)
|
|
{
|
|
p->fFunc1[x] = fixSin(fixMul(fixScaleUp(x), fPlasmaX) + t);
|
|
}
|
|
|
|
fixp_t const fFunc2 = fixSin(fixMul(fixDist(fixScaleUp(x), fixScaleUp(y),
|
|
p->fFunc2SinArg, p->fFunc2CosArg), fPlasmaX));
|
|
|
|
uint8_t const nRes = fixScaleDown(fixDiv(fixMul(p->fFunc1[x] + fFunc2 +
|
|
fixScaleUp(2), fixScaleUp(NUMPLANE - 1)), fixScaleUp(2)));
|
|
assert (nRes <= 3);
|
|
|
|
return nRes;
|
|
}
|
|
|
|
|
|
void plasma(void)
|
|
{
|
|
fixp_plasma_t r;
|
|
#ifndef __AVR__
|
|
fixPattern(0, fixScaleUp(75), 0.1 * FIX, 80, fixAnimPlasma, &r);
|
|
#else
|
|
fixPattern(0, fixScaleUp(60), 0.1 * FIX, 1, fixAnimPlasma, &r);
|
|
#endif /* __AVR__ */
|
|
}
|
|
|
|
#endif /* ANIMATION_PLASMA */
|
|
|
|
|
|
#ifdef ANIMATION_PSYCHEDELIC
|
|
|
|
/**
|
|
* This type maintains values relevant for the Psychedelic animation which need
|
|
* to be persistent over consecutive invocations.
|
|
*/
|
|
typedef struct fixp_psychedelic_s
|
|
{
|
|
fixp_t fCos; /** column factor for the circle calculation */
|
|
fixp_t fSin; /** row factor for the circle calculation */
|
|
fixp_interim_t ft10; /** value involved in rotating the animation's center*/
|
|
} fixp_psychedelic_t;
|
|
|
|
|
|
/**
|
|
* Draws flowing circular waves with a rotating center.
|
|
* @param x x-coordinate
|
|
* @param y y-coordinate
|
|
* @param t step value which changes for each frame, allowing for animations
|
|
* @param r pointer to persistent interim results
|
|
* @return The brightness value (0 < n <= NUM_PLANES) of the given coordinate.
|
|
*/
|
|
static unsigned char fixAnimPsychedelic(unsigned char const x,
|
|
unsigned char const y,
|
|
fixp_t const t,
|
|
void *const r)
|
|
{
|
|
assert(x < NUM_COLS);
|
|
assert(y < NUM_ROWS);
|
|
fixp_psychedelic_t *p = (fixp_psychedelic_t *)r;
|
|
|
|
if (x == 0 && y == 0)
|
|
{
|
|
p->fCos = NUM_COLS/2 * fixCos(t);
|
|
p->fSin = NUM_ROWS/2 * fixSin(t);
|
|
p->ft10 = fixMul(t, fixScaleUp(10));
|
|
}
|
|
|
|
uint8_t const nResult =
|
|
fixScaleDown(fixMul(fixSin((fixp_interim_t)fixDist(fixScaleUp(x),
|
|
fixScaleUp(y), p->fCos, p->fSin) - p->ft10) + fixScaleUp(1),
|
|
fixScaleUp(NUMPLANE - 1)));
|
|
assert(nResult <= NUMPLANE);
|
|
|
|
return nResult;
|
|
}
|
|
|
|
void psychedelic(void)
|
|
{
|
|
fixp_psychedelic_t r;
|
|
#ifndef __AVR__
|
|
fixPattern(0, fixScaleUp(75), 0.1 * FIX, 80, fixAnimPsychedelic, &r);
|
|
#else
|
|
fixPattern(0, fixScaleUp(60), 0.1 * FIX, 15, fixAnimPsychedelic, &r);
|
|
#endif /* __AVR__ */
|
|
}
|
|
|
|
#endif /* ANIMATION_PSYCHEDELIC */
|
|
|
|
/*@}*/
|