crashtest-r0ket/firmware/lcd/display.c

243 lines
5.8 KiB
C
Raw Normal View History

#include <string.h>
#include <display.h>
#include <sysdefs.h>
#include "lpc134x.h"
#include "core/ssp/ssp.h"
#include "gpio/gpio.h"
#include "basic/basic.h"
#include "usb/usbmsc.h"
/**************************************************************************/
/* Utility routines to manage nokia display */
/**************************************************************************/
uint8_t lcdBuffer[RESX*RESY_B];
2011-07-09 21:23:33 +00:00
int lcd_layout = 0;
2011-07-12 23:13:19 +00:00
uint32_t intstatus; // Caches USB interrupt state
// (need to disable MSC while displaying)
#define TYPE_CMD 0
#define TYPE_DATA 1
static void select() {
2011-07-10 13:32:20 +00:00
#if CFG_USBMSC
if(usbMSCenabled){
intstatus=USB_DEVINTEN;
USB_DEVINTEN=0;
};
2011-07-10 13:32:20 +00:00
#endif
/* the LCD requires 9-Bit frames */
uint32_t configReg = ( SSP_SSP0CR0_DSS_9BIT // Data size = 9-bit
| SSP_SSP0CR0_FRF_SPI // Frame format = SPI
| SSP_SSP0CR0_SCR_8); // Serial clock rate = 8
SSP_SSP0CR0 = configReg;
gpioSetValue(RB_LCD_CS, 0);
}
static void deselect() {
gpioSetValue(RB_LCD_CS, 1);
/* reset the bus to 8-Bit frames that everyone else uses */
uint32_t configReg = ( SSP_SSP0CR0_DSS_8BIT // Data size = 8-bit
| SSP_SSP0CR0_FRF_SPI // Frame format = SPI
| SSP_SSP0CR0_SCR_8); // Serial clock rate = 8
SSP_SSP0CR0 = configReg;
2011-07-10 13:32:20 +00:00
#if CFG_USBMSC
if(usbMSCenabled){
USB_DEVINTEN=intstatus;
};
2011-07-10 13:32:20 +00:00
#endif
}
static void lcdWrite(uint8_t cd, uint8_t data) {
uint16_t frame = 0x0;
frame = cd << 8;
frame |= data;
while ((SSP_SSP0SR & (SSP_SSP0SR_TNF_NOTFULL | SSP_SSP0SR_BSY_BUSY)) != SSP_SSP0SR_TNF_NOTFULL);
SSP_SSP0DR = frame;
while ((SSP_SSP0SR & (SSP_SSP0SR_BSY_BUSY|SSP_SSP0SR_RNE_NOTEMPTY)) != SSP_SSP0SR_RNE_NOTEMPTY);
/* clear the FIFO */
frame = SSP_SSP0DR;
}
void lcdInit(void) {
sspInit(0, sspClockPolarity_Low, sspClockPhase_RisingEdge);
gpioSetValue(RB_LCD_CS, 1);
gpioSetValue(RB_LCD_RST, 1);
gpioSetDir(RB_LCD_CS, gpioDirection_Output);
gpioSetDir(RB_LCD_RST, gpioDirection_Output);
delayms(100);
gpioSetValue(RB_LCD_RST, 0);
delayms(100);
gpioSetValue(RB_LCD_RST, 1);
delayms(100);
select();
lcdWrite(TYPE_CMD,0xE2);
delayms(5);
lcdWrite(TYPE_CMD,0xAF);
lcdWrite(TYPE_CMD,0xA4);
lcdWrite(TYPE_CMD,0x2F);
lcdWrite(TYPE_CMD,0xB0);
lcdWrite(TYPE_CMD,0x10);
lcdWrite(TYPE_CMD,0x00);
uint16_t i;
for(i=0; i<100; i++)
lcdWrite(TYPE_DATA,0x00);
deselect();
}
void lcdFill(char f){
int x;
for(x=0;x<RESX*RESY_B;x++) {
lcdBuffer[x]=f;
}
};
void lcdSafeSetPixel(char x, char y, bool f){
if (x>=0 && x<RESX && y>=0 && y < RESY)
lcdSetPixel(x, y, f);
}
2011-06-13 17:55:51 +00:00
void lcdSetPixel(char x, char y, bool f){
if (x<0 || x> RESX || y<0 || y > RESY)
return;
char y_byte = (RESY-(y+1)) / 8;
char y_off = (RESY-(y+1)) % 8;
char byte = lcdBuffer[y_byte*RESX+(RESX-(x+1))];
if (f) {
byte |= (1 << y_off);
} else {
byte &= ~(1 << y_off);
}
lcdBuffer[y_byte*RESX+(RESX-(x+1))] = byte;
2011-06-13 17:55:51 +00:00
}
2011-06-14 00:20:15 +00:00
bool lcdGetPixel(char x, char y){
char y_byte = (RESY-(y+1)) / 8;
char y_off = (RESY-(y+1)) % 8;
char byte = lcdBuffer[y_byte*RESX+(RESX-(x+1))];
return byte & (1 << y_off);
2011-06-14 00:20:15 +00:00
}
void lcdDisplay(void) {
2011-07-09 21:23:33 +00:00
char byte;
select();
lcdWrite(TYPE_CMD,0xB0);
lcdWrite(TYPE_CMD,0x10);
lcdWrite(TYPE_CMD,0x00);
uint16_t i,page;
for(page=0; page<RESY_B;page++) {
for(i=0; i<RESX; i++) {
2011-07-09 21:23:33 +00:00
if (lcd_layout & LCD_MIRRORX)
byte=lcdBuffer[page*RESX+RESX-1-(i)];
2011-07-09 21:23:33 +00:00
else
byte=lcdBuffer[page*RESX+(i)];
2011-07-09 21:23:33 +00:00
if (lcd_layout & LCD_INVERTED)
byte=~byte;
lcdWrite(TYPE_DATA,byte);
}
}
deselect();
}
2011-07-09 21:23:33 +00:00
inline void lcdInvert(void) {
lcdToggleFlag(LCD_INVERTED);
}
2011-07-09 21:23:33 +00:00
void lcdToggleFlag(int flag) {
lcd_layout=lcd_layout ^ flag;
}
2011-07-19 00:43:15 +00:00
void lcdShiftH(bool right, bool wrap) {
uint8_t tmp;
for (int yb = 0; yb<RESY_B; yb++) {
if (right) {
tmp = lcdBuffer[yb*RESX];
memmove(lcdBuffer + yb*RESX,lcdBuffer + yb*RESX+1 ,RESX-1);
if (wrap) lcdBuffer[yb*RESX+(RESX-1)] = tmp;
} else {
tmp = lcdBuffer[yb*RESX+(RESX-1)];
memmove(lcdBuffer + yb*RESX+1,lcdBuffer + yb*RESX ,RESX-1);
if (wrap) lcdBuffer[yb*RESX] = tmp;
}
}
}
void lcdShiftV8(bool up, bool wrap) {
uint8_t tmp[RESX];
if (up) {
if (wrap) memmove(tmp, lcdBuffer, RESX);
memmove(lcdBuffer,lcdBuffer+RESX ,RESX*(RESY_B-1));
if (wrap) memmove(lcdBuffer+RESX*(RESY_B-1),tmp,RESX);
} else {
if (wrap) memmove(tmp, lcdBuffer+RESX*(RESY_B-1), RESX);
memmove(lcdBuffer+RESX,lcdBuffer ,RESX*(RESY_B-1));
if (wrap) memmove(lcdBuffer,tmp,RESX);
}
}
void lcdShiftV(bool up, bool wrap) {
uint8_t tmp[RESX];
if (up) {
if (wrap) memmove(tmp,lcdBuffer+((RESY_B-1)*RESX),RESX);
for (int x = 0; x<RESX; x++){
for (int y = RESY_B-1; y > 0; y--){
lcdBuffer[x+(y*RESX)] = (lcdBuffer[x+(y*RESX)] << 1) |( lcdBuffer[x+((y-1)*RESX)] >> 7);
}
if (wrap) lcdBuffer[x] = ( lcdBuffer[x] << 1) | ((tmp[x]>>3)&1);
}
} else {
if (wrap) memmove(tmp,lcdBuffer,RESX);
for (int x = 0; x<RESX; x++){
for (int y = 0; y < (RESY_B-1); y++){
lcdBuffer[x+(y*RESX)] = (lcdBuffer[x+(y*RESX)] >> 1) |( lcdBuffer[x+((y+1)*RESX)] << 7);
}
if (wrap) lcdBuffer[x+((RESY_B-1)*RESX)] = ( lcdBuffer[x+((RESY_B-1)*RESX)] >> 1) | ((tmp[x]<<3)&8);
}
}
}
void lcdShift(int x, int y, bool wrap) {
bool dir=true;
2011-07-19 00:43:15 +00:00
if(x<0){
dir=false;
x=-x;
};
while(x-->0)
lcdShiftH(dir, wrap);
if(y<0){
dir=false;
y=-y;
}else{
dir=true;
};
while(y>=8){
y-=8;
lcdShiftV8(dir, wrap);
};
while(y-->0)
2011-07-19 00:43:15 +00:00
lcdShiftV(dir, wrap);
}