// "Adalight" is a do-it-yourself facsimile of the Philips Ambilight concept // for desktop computers and home theater PCs. This is the host PC-side code // written in Processing, intended for use with a USB-connected Arduino // microcontroller running the accompanying LED streaming code. Requires one // or more strands of Digital RGB LED Pixels (Adafruit product ID #322, // specifically the newer WS2801-based type, strand of 25) and a 5 Volt power // supply (such as Adafruit #276). You may need to adapt the code and the // hardware arrangement for your specific display configuration. // Screen capture adapted from code by Cedrik Kiefer (processing.org forum) // -------------------------------------------------------------------- // This file is part of Adalight. // Adalight is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation, either version 3 of // the License, or (at your option) any later version. // Adalight is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public // License along with Adalight. If not, see // . // -------------------------------------------------------------------- import java.awt.*; import java.awt.image.*; import processing.serial.*; // CONFIGURABLE PROGRAM CONSTANTS -------------------------------------------- // Minimum LED brightness; some users prefer a small amount of backlighting // at all times, regardless of screen content. Higher values are brighter, // or set to 0 to disable this feature. static final short minBrightness = 120; // LED transition speed; it's sometimes distracting if LEDs instantaneously // track screen contents (such as during bright flashing sequences), so this // feature enables a gradual fade to each new LED state. Higher numbers yield // slower transitions (max of 255), or set to 0 to disable this feature // (immediate transition of all LEDs). static final short fade = 75; // Pixel size for the live preview image. static final int pixelSize = 20; // Depending on many factors, it may be faster either to capture full // screens and process only the pixels needed, or to capture multiple // smaller sub-blocks bounding each region to be processed. Try both, // look at the reported frame rates in the Processing output console, // and run with whichever works best for you. static final boolean useFullScreenCaps = true; // Serial device timeout (in milliseconds), for locating Arduino device // running the corresponding LEDstream code. See notes later in the code... // in some situations you may want to entirely comment out that block. static final int timeout = 5000; // 5 seconds // PER-DISPLAY INFORMATION --------------------------------------------------- // This array contains details for each display that the software will // process. If you have screen(s) attached that are not among those being // "Adalighted," they should not be in this list. Each triplet in this // array represents one display. The first number is the system screen // number...typically the "primary" display on most systems is identified // as screen #1, but since arrays are indexed from zero, use 0 to indicate // the first screen, 1 to indicate the second screen, and so forth. This // is the ONLY place system screen numbers are used...ANY subsequent // references to displays are an index into this list, NOT necessarily the // same as the system screen number. For example, if you have a three- // screen setup and are illuminating only the third display, use '2' for // the screen number here...and then, in subsequent section, '0' will be // used to refer to the first/only display in this list. // The second and third numbers of each triplet represent the width and // height of a grid of LED pixels attached to the perimeter of this display. // For example, '9,6' = 9 LEDs across, 6 LEDs down. static final int displays[][] = new int[][] { {0,9,6} // Screen 0, 9 LEDs across, 6 LEDs down //,{1,9,6} // Screen 1, also 9 LEDs across and 6 LEDs down }; // PER-LED INFORMATION ------------------------------------------------------- // This array contains the 2D coordinates corresponding to each pixel in the // LED strand, in the order that they're connected (i.e. the first element // here belongs to the first LED in the strand, second element is the second // LED, and so forth). Each triplet in this array consists of a display // number (an index into the display array above, NOT necessarily the same as // the system screen number) and an X and Y coordinate specified in the grid // units given for that display. {0,0,0} is the top-left corner of the first // display in the array. // For our example purposes, the coordinate list below forms a ring around // the perimeter of a single screen, with a one pixel gap at the bottom to // accommodate a monitor stand. Modify this to match your own setup: static final int leds[][] = new int[][] { {0,3,5}, {0,2,5}, {0,1,5}, {0,0,5}, // Bottom edge, left half {0,0,4}, {0,0,3}, {0,0,2}, {0,0,1}, // Left edge {0,0,0}, {0,1,0}, {0,2,0}, {0,3,0}, {0,4,0}, // Top edge {0,5,0}, {0,6,0}, {0,7,0}, {0,8,0}, // More top edge {0,8,1}, {0,8,2}, {0,8,3}, {0,8,4}, // Right edge {0,8,5}, {0,7,5}, {0,6,5}, {0,5,5} // Bottom edge, right half /* Hypothetical second display has the same arrangement as the first. But you might not want both displays completely ringed with LEDs; the screens might be positioned where they share an edge in common. ,{1,3,5}, {1,2,5}, {1,1,5}, {1,0,5}, // Bottom edge, left half {1,0,4}, {1,0,3}, {1,0,2}, {1,0,1}, // Left edge {1,0,0}, {1,1,0}, {1,2,0}, {1,3,0}, {1,4,0}, // Top edge {1,5,0}, {1,6,0}, {1,7,0}, {1,8,0}, // More top edge {1,8,1}, {1,8,2}, {1,8,3}, {1,8,4}, // Right edge {1,8,5}, {1,7,5}, {1,6,5}, {1,5,5} // Bottom edge, right half */ }; // GLOBAL VARIABLES ---- You probably won't need to modify any of this ------- byte[] serialData = new byte[6 + leds.length * 3]; short[][] ledColor = new short[leds.length][3], prevColor = new short[leds.length][3]; byte[][] gamma = new byte[256][3]; int nDisplays = displays.length; Robot[] bot = new Robot[displays.length]; Rectangle[] dispBounds = new Rectangle[displays.length], ledBounds; // Alloc'd only if per-LED captures int[][] pixelOffset = new int[leds.length][256], screenData; // Alloc'd only if full-screen captures PImage[] preview = new PImage[displays.length]; Serial port; DisposeHandler dh; // For disabling LEDs on exit // INITIALIZATION ------------------------------------------------------------ void setup() { GraphicsEnvironment ge; GraphicsConfiguration[] gc; GraphicsDevice[] gd; int d, i, totalWidth, maxHeight, row, col, rowOffset; int[] x = new int[16], y = new int[16]; float f, range, step, start; dh = new DisposeHandler(this); // Init DisposeHandler ASAP // Open serial port. As written here, this assumes the Arduino is the // first/only serial device on the system. If that's not the case, // change "Serial.list()[0]" to the name of the port to be used: port = new Serial(this, Serial.list()[0], 115200); // Alternately, in certain situations the following line can be used // to detect the Arduino automatically. But this works ONLY with SOME // Arduino boards and versions of Processing! This is so convoluted // to explain, it's easier just to test it yourself and see whether // it works...if not, leave it commented out and use the prior port- // opening technique. // port = openPort(); // And finally, to test the software alone without an Arduino connected, // don't open a port...just comment out the serial lines above. // Initialize screen capture code for each display's dimensions. dispBounds = new Rectangle[displays.length]; if(useFullScreenCaps == true) { screenData = new int[displays.length][]; // ledBounds[] not used } else { ledBounds = new Rectangle[leds.length]; // screenData[][] not used } ge = GraphicsEnvironment.getLocalGraphicsEnvironment(); gd = ge.getScreenDevices(); if(nDisplays > gd.length) nDisplays = gd.length; totalWidth = maxHeight = 0; for(d=0; d 0) totalWidth++; if(displays[d][2] > maxHeight) maxHeight = displays[d][2]; } // Precompute locations of every pixel to read when downsampling. // Saves a bunch of math on each frame, at the expense of a chunk // of RAM. Number of samples is now fixed at 256; this allows for // some crazy optimizations in the downsampling code. for(i=0; i> 8); // LED count high byte serialData[4] = (byte)((leds.length - 1) & 0xff); // LED count low byte serialData[5] = (byte)(serialData[3] ^ serialData[4] ^ 0x55); // Checksum // Pre-compute gamma correction table for LED brightness levels: for(i=0; i<256; i++) { f = pow((float)i / 255.0, 2.8); gamma[i][0] = (byte)(f * 255.0); gamma[i][1] = (byte)(f * 240.0); gamma[i][2] = (byte)(f * 220.0); } } // Open and return serial connection to Arduino running LEDstream code. This // attempts to open and read from each serial device on the system, until the // matching "Ada\n" acknowledgement string is found. Due to the serial // timeout, if you have multiple serial devices/ports and the Arduino is late // in the list, this can take seemingly forever...so if you KNOW the Arduino // will always be on a specific port (e.g. "COM6"), you might want to comment // out most of this to bypass the checks and instead just open that port // directly! (Modify last line in this method with the serial port name.) Serial openPort() { String[] ports; String ack; int i, start; Serial s; ports = Serial.list(); // List of all serial ports/devices on system. for(i=0; i= 4) && ((ack = s.readString()) != null) && ack.contains("Ada\n")) { return s; // Got it! } } // Connection timed out. Close port and move on to the next. s.stop(); } // Didn't locate a device returning the acknowledgment string. // Maybe it's out there but running the old LEDstream code, which // didn't have the ACK. Can't say for sure, so we'll take our // changes with the first/only serial device out there... return new Serial(this, ports[0], 115200); } // PER_FRAME PROCESSING ------------------------------------------------------ void draw () { BufferedImage img; int d, i, j, o, c, weight, rb, g, sum, deficit, s2; int[] pxls, offs; if(useFullScreenCaps == true ) { // Capture each screen in the displays array. for(d=0; d> 24) & 0xff) * weight + prevColor[i][0] * fade) >> 8); ledColor[i][1] = (short)(((( g >> 16) & 0xff) * weight + prevColor[i][1] * fade) >> 8); ledColor[i][2] = (short)((((rb >> 8) & 0xff) * weight + prevColor[i][2] * fade) >> 8); // Boost pixels that fall below the minimum brightness sum = ledColor[i][0] + ledColor[i][1] + ledColor[i][2]; if(sum < minBrightness) { if(sum == 0) { // To avoid divide-by-zero deficit = minBrightness / 3; // Spread equally to R,G,B ledColor[i][0] += deficit; ledColor[i][1] += deficit; ledColor[i][2] += deficit; } else { deficit = minBrightness - sum; s2 = sum * 2; // Spread the "brightness deficit" back into R,G,B in proportion to // their individual contribition to that deficit. Rather than simply // boosting all pixels at the low end, this allows deep (but saturated) // colors to stay saturated...they don't "pink out." ledColor[i][0] += deficit * (sum - ledColor[i][0]) / s2; ledColor[i][1] += deficit * (sum - ledColor[i][1]) / s2; ledColor[i][2] += deficit * (sum - ledColor[i][2]) / s2; } } // Apply gamma curve and place in serial output buffer serialData[j++] = gamma[ledColor[i][0]][0]; serialData[j++] = gamma[ledColor[i][1]][1]; serialData[j++] = gamma[ledColor[i][2]][2]; // Update pixels in preview image preview[d].pixels[leds[i][2] * displays[d][1] + leds[i][1]] = (ledColor[i][0] << 16) | (ledColor[i][1] << 8) | ledColor[i][2]; } if(port != null) port.write(serialData); // Issue data to Arduino // Show live preview image(s) scale(pixelSize); for(i=d=0; d