%% Parameters for Electric Engine Dyno Example % This example shows how to model an electric vehicle dynamometer test. % The test environment contains an asynchronous machine (ASM) and an % interior permanent magnet synchronous machine (IPMSM) connected back- % to-back through a mechanical shaft. Both machines are fed by high- % voltage batteries through controlled three-phase converters. The 164 kW % ASM produces the load torque. The 35 kW IPMSM is the electric machine % under test. The Control Machine Under Test (IPMSM) subsystem controls the % torque of the IPMSM. The controller includes a multi-rate PI-based % control structure. The rate of the open-loop torque control is slower % than the rate of the closed-loop current control. The task scheduling % for the controller is implemented as a Stateflow(TM) state machine. The % Control Load Machine (ASM) subsystem uses a single rate to control the % speed of the ASM. The Visualization subsystem contains scopes that % allow you to see the simulation results. % Copyright 2016-2017 The MathWorks, Inc. %% Machine Parameters Pmax = 35000; % Maximum power [W] Tmax = 205; % Maximum torque [N*m] Ld = 0.00024368; % Stator d-axis inductance [H] Lq = 0.00029758; % Stator q-axis inductance [H] L0 = 0.00012184; % Stator zero-sequence inductance [H] Rs = 0.010087; % Stator resistance per phase [Ohm] psim = 0.04366; % Permanent magnet flux linkage [Wb] p = 8; % Number of pole pairs %% High-Voltage Battery Parameters Cdc = 0.001; % DC-link capacitor [F] Vnom = 325; % Nominal DC voltage[V] V1 = 300; % Voltage V1(< Vnom)[V] %% PMSM Control Parameters Ts = 1e-5; % Fundamental sample time [s] fsw = 10e3; % PMSM drive switching frequency [Hz] Tsi = 1e-4; % Sample time for current control loops [s] Kp_id = 0.8779; % Proportional gain id controller Ki_id = 710.3004; % Integrator gain id controller Kp_iq = 1.0744; % Proportional gain iq controller Ki_iq = 1.0615e+03; % Integrator gain iq controller %% Zero-Cancellation Transfer Functions numd_id = Tsi/(Kp_id/Ki_id); dend_id = [1 (Tsi-(Kp_id/Ki_id))/(Kp_id/Ki_id)]; numd_iq = Tsi/(Kp_iq/Ki_iq); dend_iq = [1 (Tsi-(Kp_iq/Ki_iq))/(Kp_iq/Ki_iq)]; %% Current References load pe_ipmsm_35kW_ref_idq; %% ASM Parameters Pn = 164e3; % Nominal power [W] Vn = 550; % rms phase-to-phase rated voltage [V] fn = 60; % Rated frequency [Hz] Rs2 = 0.0139; % Stator resistance [pu] Lls = 0.0672; % Stator leakage inductance [pu] Rr = 0.0112; % Rotor resistance, referred to the stator side [pu] Llr = 0.0672; % Rotor leakage inductance, referred to the stator side [pu] Lm = 2.717; % Magnetizing inductance [pu] Lr = Llr+Lm; % Rotor inductance [pu] Ls = Lls+Lm; % Stator inductance [pu] p2 = 2; % Number of pole pairs [pu] Vbase = Vn/sqrt(3)*sqrt(2); % Base voltage, peak, line-to-neutral [V] Ibase = Pn/(1.5*Vbase); % Base current, peak [A] Zbase = Vbase/Ibase; % Base resistance [Ohm] wbase = 2*pi*fn; % Base electrical radial frequency [rad/s] Tbase = Pn/(wbase/p2); % Base torque [N*m] Rss = Rs2*Zbase; % Stator resistance [Ohm] Xls = Lls*Zbase; % Stator leakage reactance [Ohm] Rrr = Rr*Zbase; % Rotor resistance, referred to the stator side [Ohm] Xlr = Llr*Zbase; % Rotor leakage reactance, referred to the stator side[Ohm] Xm = Lm*Zbase; % Magnetizing reactance [Ohm] %% ASM Control Parameters fsw2 = 2e3; % ASM drive switching frequency [Hz] Tsc = 1/(fsw2*5); % ASM control sample time [s] % ASM PI parameters Kp_ids = 1.08; Ki_ids = 207.58; Kp_imr = 52.22; Ki_imr = 2790.51; Kp_iqs = 1.08; Ki_iqs = 210.02; Kp_wr = 10; Ki_wr = 100; %% Coupling Parameters Jm = 0.1234; % Inertia [Kg*m^2] ce = 25; % Damping coefficient [N*m/(rad/s)]