/** * This file is part of the hoverboard-firmware-hack project. * * Copyright (C) 2020-2021 Emanuel FERU * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ // Includes #include // for abs() #include #include "stm32f1xx_hal.h" #include "defines.h" #include "setup.h" #include "config.h" #include "comms.h" #include "eeprom.h" #include "util.h" #include "BLDC_controller.h" #include "rtwtypes.h" #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) #include "hd44780.h" #endif /* =========================== Variable Definitions =========================== */ //------------------------------------------------------------------------ // Global variables set externally //------------------------------------------------------------------------ extern volatile adc_buf_t adc_buffer; extern I2C_HandleTypeDef hi2c2; extern UART_HandleTypeDef huart2; extern UART_HandleTypeDef huart3; extern int16_t batVoltage; extern uint8_t backwardDrive; extern uint8_t buzzerFreq; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t buzzerPattern; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7... extern uint8_t enable; // global variable for motor enable extern uint8_t nunchuk_data[6]; extern volatile uint32_t timeout; // global variable for timeout extern volatile uint32_t main_loop_counter; #ifdef CONTROL_PPM extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1]; #endif #ifdef CONTROL_PWM extern volatile uint16_t pwm_captured_ch1_value; extern volatile uint16_t pwm_captured_ch2_value; #endif #ifdef BUTTONS_RIGHT extern volatile uint8_t btn1; // Blue extern volatile uint8_t btn2; // Green #endif //------------------------------------------------------------------------ // Global variables set here in util.c //------------------------------------------------------------------------ // Matlab defines - from auto-code generation //--------------- RT_MODEL rtM_Left_; /* Real-time model */ RT_MODEL rtM_Right_; /* Real-time model */ RT_MODEL *const rtM_Left = &rtM_Left_; RT_MODEL *const rtM_Right = &rtM_Right_; extern P rtP_Left; /* Block parameters (auto storage) */ DW rtDW_Left; /* Observable states */ ExtU rtU_Left; /* External inputs */ ExtY rtY_Left; /* External outputs */ P rtP_Right; /* Block parameters (auto storage) */ DW rtDW_Right; /* Observable states */ ExtU rtU_Right; /* External inputs */ ExtY rtY_Right; /* External outputs */ //--------------- int16_t cmd1; // normalized input value. -1000 to 1000 int16_t cmd2; // normalized input value. -1000 to 1000 int16_t speedAvg; // average measured speed int16_t speedAvgAbs; // average measured speed in absolute uint8_t timeoutFlagADC = 0; // Timeout Flag for ADC Protection: 0 = OK, 1 = Problem detected (line disconnected or wrong ADC data) uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) uint8_t ctrlModReqRaw = CTRL_MOD_REQ; uint8_t ctrlModReq = CTRL_MOD_REQ; // Final control mode request #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) uint8_t rx_buffer_L[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer static uint32_t rx_buffer_L_len = ARRAY_LEN(rx_buffer_L); #endif #if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) static int16_t timeoutCntSerial_L = 0; // Timeout counter for Rx Serial command static uint8_t timeoutFlagSerial_L = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) #endif #if defined(SIDEBOARD_SERIAL_USART2) SerialSideboard Sideboard_L; SerialSideboard Sideboard_L_raw; static uint32_t Sideboard_L_len = sizeof(Sideboard_L); #endif #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) uint8_t rx_buffer_R[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer static uint32_t rx_buffer_R_len = ARRAY_LEN(rx_buffer_R); #endif #if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) static int16_t timeoutCntSerial_R = 0; // Timeout counter for Rx Serial command static uint8_t timeoutFlagSerial_R = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) #endif #if defined(SIDEBOARD_SERIAL_USART3) SerialSideboard Sideboard_R; SerialSideboard Sideboard_R_raw; static uint32_t Sideboard_R_len = sizeof(Sideboard_R); #endif #if !defined(VARIANT_HOVERBOARD) && (defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3)) static uint8_t sensor1_prev; // holds the previous sensor1 state static uint8_t sensor2_prev; // holds the previous sensor2 state static uint8_t sensor1_index; // holds the press index number for sensor1, when used as a button static uint8_t sensor2_index; // holds the press index number for sensor2, when used as a button #endif #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) LCD_PCF8574_HandleTypeDef lcd; #endif #if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK) uint8_t nunchuk_connected = 1; #else uint8_t nunchuk_connected = 0; #endif #ifdef VARIANT_TRANSPOTTER float setDistance; uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1337}; // Virtual address defined by the user: 0xFFFF value is prohibited static uint16_t saveValue = 0; static uint8_t saveValue_valid = 0; #elif defined(CONTROL_ADC) uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308}; #else uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1300}; // Dummy virtual address to avoid warnings #endif //------------------------------------------------------------------------ // Local variables //------------------------------------------------------------------------ static int16_t INPUT_MAX; // [-] Input target maximum limitation static int16_t INPUT_MIN; // [-] Input target minimum limitation #if defined(CONTROL_ADC) && defined(ADC_PROTECT_ENA) static int16_t timeoutCntADC = 0; // Timeout counter for ADC Protection #endif #if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3) static SerialCommand command; static SerialCommand command_raw; static uint32_t command_len = sizeof(command); #ifdef CONTROL_IBUS static uint16_t ibus_chksum; static uint16_t ibus_captured_value[IBUS_NUM_CHANNELS]; #endif #endif #ifdef SUPPORT_BUTTONS static uint8_t button1, button2; #endif #ifdef CONTROL_ADC static uint8_t cur_spd_valid = 0; static uint8_t adc_cal_valid = 0; static uint16_t ADC1_MIN_CAL = ADC1_MIN; static uint16_t ADC1_MAX_CAL = ADC1_MAX; static uint16_t ADC2_MIN_CAL = ADC2_MIN; static uint16_t ADC2_MAX_CAL = ADC2_MAX; #ifdef ADC1_MID_POT static uint16_t ADC1_MID_CAL = ADC1_MID; #else static uint16_t ADC1_MID_CAL = 0; #endif #ifdef ADC1_MID_POT static uint16_t ADC2_MID_CAL = ADC2_MID; #else static uint16_t ADC2_MID_CAL = 0; #endif #endif #ifdef VARIANT_HOVERCAR static uint8_t brakePressed; #endif /* =========================== Initialization Functions =========================== */ void BLDC_Init(void) { /* Set BLDC controller parameters */ rtP_Left.b_selPhaABCurrMeas = 1; // Left motor measured current phases {Green, Blue} = {iA, iB} -> do NOT change rtP_Left.z_ctrlTypSel = CTRL_TYP_SEL; rtP_Left.b_diagEna = DIAG_ENA; rtP_Left.i_max = (I_MOT_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4) rtP_Left.n_max = N_MOT_MAX << 4; // fixdt(1,16,4) rtP_Left.b_fieldWeakEna = FIELD_WEAK_ENA; rtP_Left.id_fieldWeakMax = (FIELD_WEAK_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4) rtP_Left.a_phaAdvMax = PHASE_ADV_MAX << 4; // fixdt(1,16,4) rtP_Left.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4) rtP_Left.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4) rtP_Right = rtP_Left; // Copy the Left motor parameters to the Right motor parameters rtP_Right.b_selPhaABCurrMeas = 0; // Right motor measured current phases {Blue, Yellow} = {iB, iC} -> do NOT change /* Pack LEFT motor data into RTM */ rtM_Left->defaultParam = &rtP_Left; rtM_Left->dwork = &rtDW_Left; rtM_Left->inputs = &rtU_Left; rtM_Left->outputs = &rtY_Left; /* Pack RIGHT motor data into RTM */ rtM_Right->defaultParam = &rtP_Right; rtM_Right->dwork = &rtDW_Right; rtM_Right->inputs = &rtU_Right; rtM_Right->outputs = &rtY_Right; /* Initialize BLDC controllers */ BLDC_controller_initialize(rtM_Left); BLDC_controller_initialize(rtM_Right); } void Input_Lim_Init(void) { // Input Limitations - ! Do NOT touch ! if (rtP_Left.b_fieldWeakEna || rtP_Right.b_fieldWeakEna) { INPUT_MAX = MAX( 1000, FIELD_WEAK_HI); INPUT_MIN = MIN(-1000,-FIELD_WEAK_HI); } else { INPUT_MAX = 1000; INPUT_MIN = -1000; } } void Input_Init(void) { #ifdef CONTROL_PPM PPM_Init(); #endif #ifdef CONTROL_PWM PWM_Init(); #endif #ifdef CONTROL_NUNCHUK I2C_Init(); Nunchuk_Init(); #endif #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) UART2_Init(); #endif #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) UART3_Init(); #endif #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) HAL_UART_Receive_DMA(&huart2, (uint8_t *)rx_buffer_L, sizeof(rx_buffer_L)); #endif #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) HAL_UART_Receive_DMA(&huart3, (uint8_t *)rx_buffer_R, sizeof(rx_buffer_R)); #endif #ifdef CONTROL_ADC uint16_t writeCheck, i_max, n_max; HAL_FLASH_Unlock(); EE_Init(); /* EEPROM Init */ EE_ReadVariable(VirtAddVarTab[0], &writeCheck); if (writeCheck == FLASH_WRITE_KEY) { EE_ReadVariable(VirtAddVarTab[1], &ADC1_MIN_CAL); EE_ReadVariable(VirtAddVarTab[2], &ADC1_MAX_CAL); EE_ReadVariable(VirtAddVarTab[3], &ADC1_MID_CAL); EE_ReadVariable(VirtAddVarTab[4], &ADC2_MIN_CAL); EE_ReadVariable(VirtAddVarTab[5], &ADC2_MAX_CAL); EE_ReadVariable(VirtAddVarTab[6], &ADC2_MID_CAL); EE_ReadVariable(VirtAddVarTab[7], &i_max); EE_ReadVariable(VirtAddVarTab[8], &n_max); rtP_Left.i_max = i_max; rtP_Left.n_max = n_max; rtP_Right.i_max = i_max; rtP_Right.n_max = n_max; } HAL_FLASH_Lock(); #endif #ifdef VARIANT_TRANSPOTTER enable = 1; HAL_FLASH_Unlock(); EE_Init(); /* EEPROM Init */ EE_ReadVariable(VirtAddVarTab[0], &saveValue); HAL_FLASH_Lock(); setDistance = saveValue / 1000.0; if (setDistance < 0.2) { setDistance = 1.0; } #endif #if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD) I2C_Init(); HAL_Delay(50); lcd.pcf8574.PCF_I2C_ADDRESS = 0x27; lcd.pcf8574.PCF_I2C_TIMEOUT = 5; lcd.pcf8574.i2c = hi2c2; lcd.NUMBER_OF_LINES = NUMBER_OF_LINES_2; lcd.type = TYPE0; if(LCD_Init(&lcd)!=LCD_OK) { // error occured //TODO while(1); } LCD_ClearDisplay(&lcd); HAL_Delay(5); LCD_SetLocation(&lcd, 0, 0); #ifdef VARIANT_TRANSPOTTER LCD_WriteString(&lcd, "TranspOtter V2.1"); #else LCD_WriteString(&lcd, "Hover V2.0"); #endif LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Initializing..."); #endif #if defined(VARIANT_TRANSPOTTER) && defined(SUPPORT_LCD) LCD_ClearDisplay(&lcd); HAL_Delay(5); LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Bat:"); LCD_SetLocation(&lcd, 8, 1); LCD_WriteString(&lcd, "V"); LCD_SetLocation(&lcd, 15, 1); LCD_WriteString(&lcd, "A"); LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Len:"); LCD_SetLocation(&lcd, 8, 0); LCD_WriteString(&lcd, "m("); LCD_SetLocation(&lcd, 14, 0); LCD_WriteString(&lcd, "m)"); #endif } /* =========================== General Functions =========================== */ void poweronMelody(void) { for (int i = 8; i >= 0; i--) { buzzerFreq = (uint8_t)i; HAL_Delay(100); } buzzerFreq = 0; } void shortBeep(uint8_t freq) { buzzerFreq = freq; HAL_Delay(100); buzzerFreq = 0; } void shortBeepMany(uint8_t cnt) { for(uint8_t i = 0; i < cnt; i++) { shortBeep(i + 5); } } void longBeep(uint8_t freq) { buzzerFreq = freq; HAL_Delay(500); buzzerFreq = 0; } void calcAvgSpeed(void) { // Calculate measured average speed. The minus sign (-) is because motors spin in opposite directions #if !defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION) speedAvg = ( rtY_Left.n_mot - rtY_Right.n_mot) / 2; #elif !defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION) speedAvg = ( rtY_Left.n_mot + rtY_Right.n_mot) / 2; #elif defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION) speedAvg = (-rtY_Left.n_mot - rtY_Right.n_mot) / 2; #elif defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION) speedAvg = (-rtY_Left.n_mot + rtY_Right.n_mot) / 2; #endif // Handle the case when SPEED_COEFFICIENT sign is negative (which is when most significant bit is 1) if (SPEED_COEFFICIENT & (1 << 16)) { speedAvg = -speedAvg; } speedAvgAbs = abs(speedAvg); } /* * Auto-calibration of the ADC Limits * This function finds the Minimum, Maximum, and Middle for the ADC input * Procedure: * - press the power button for more than 5 sec and release after the beep sound * - move the potentiometers freely to the min and max limits repeatedly * - release potentiometers to the resting postion * - press the power button to confirm or wait for the 20 sec timeout */ void adcCalibLim(void) { if (speedAvgAbs > 5) { // do not enter this mode if motors are spinning return; } #ifdef CONTROL_ADC consoleLog("ADC calibration started... "); // Inititalization: MIN = a high values, MAX = a low value, int32_t adc1_fixdt = adc_buffer.l_tx2 << 16; int32_t adc2_fixdt = adc_buffer.l_rx2 << 16; uint16_t adc_cal_timeout = 0; uint16_t ADC1_MIN_temp = 4095; uint16_t ADC1_MID_temp = 0; uint16_t ADC1_MAX_temp = 0; uint16_t ADC2_MIN_temp = 4095; uint16_t ADC2_MID_temp = 0; uint16_t ADC2_MAX_temp = 0; adc_cal_valid = 1; // Extract MIN, MAX and MID from ADC while the power button is not pressed while (!HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) && adc_cal_timeout < 4000) { // 20 sec timeout filtLowPass32(adc_buffer.l_tx2, FILTER, &adc1_fixdt); filtLowPass32(adc_buffer.l_rx2, FILTER, &adc2_fixdt); ADC1_MID_temp = (uint16_t)CLAMP(adc1_fixdt >> 16, 0, 4095); // convert fixed-point to integer ADC2_MID_temp = (uint16_t)CLAMP(adc2_fixdt >> 16, 0, 4095); ADC1_MIN_temp = MIN(ADC1_MIN_temp, ADC1_MID_temp); ADC1_MAX_temp = MAX(ADC1_MAX_temp, ADC1_MID_temp); ADC2_MIN_temp = MIN(ADC2_MIN_temp, ADC2_MID_temp); ADC2_MAX_temp = MAX(ADC2_MAX_temp, ADC2_MID_temp); adc_cal_timeout++; HAL_Delay(5); } // ADC calibration checks #ifdef ADC_PROTECT_ENA if ((ADC1_MIN_temp + 150 - ADC_PROTECT_THRESH) > 0 && (ADC1_MAX_temp - 150 + ADC_PROTECT_THRESH) < 4095 && (ADC2_MIN_temp + 150 - ADC_PROTECT_THRESH) > 0 && (ADC2_MAX_temp - 150 + ADC_PROTECT_THRESH) < 4095) { adc_cal_valid = 1; } else { adc_cal_valid = 0; consoleLog("FAIL (ADC out-of-range protection not possible)\n"); } #endif // Add final ADC margin to have exact 0 and MAX at the minimum and maximum ADC value if (adc_cal_valid && (ADC1_MAX_temp - ADC1_MIN_temp) > 500 && (ADC2_MAX_temp - ADC2_MIN_temp) > 500) { ADC1_MIN_CAL = ADC1_MIN_temp + 150; ADC1_MID_CAL = ADC1_MID_temp; ADC1_MAX_CAL = ADC1_MAX_temp - 150; ADC2_MIN_CAL = ADC2_MIN_temp + 150; ADC2_MID_CAL = ADC2_MID_temp; ADC2_MAX_CAL = ADC2_MAX_temp - 150; consoleLog("OK\n"); } else { adc_cal_valid = 0; consoleLog("FAIL (Pots travel too short)\n"); } #endif } /* * Update Maximum Motor Current Limit (via ADC1) and Maximum Speed Limit (via ADC2) * Procedure: * - press the power button for more than 5 sec and immediatelly after the beep sound press one more time shortly * - move and hold the pots to a desired limit position for Current and Speed * - press the power button to confirm or wait for the 10 sec timeout */ void updateCurSpdLim(void) { if (speedAvgAbs > 5) { // do not enter this mode if motors are spinning return; } #ifdef CONTROL_ADC consoleLog("Torque and Speed limits update started... "); int32_t adc1_fixdt = adc_buffer.l_tx2 << 16; int32_t adc2_fixdt = adc_buffer.l_rx2 << 16; uint16_t cur_spd_timeout = 0; uint16_t cur_factor; // fixdt(0,16,16) uint16_t spd_factor; // fixdt(0,16,16) // Wait for the power button press while (!HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) && cur_spd_timeout < 2000) { // 10 sec timeout filtLowPass32(adc_buffer.l_tx2, FILTER, &adc1_fixdt); filtLowPass32(adc_buffer.l_rx2, FILTER, &adc2_fixdt); cur_spd_timeout++; HAL_Delay(5); } // Calculate scaling factors cur_factor = CLAMP((adc1_fixdt - (ADC1_MIN_CAL << 16)) / (ADC1_MAX_CAL - ADC1_MIN_CAL), 6553, 65535); // ADC1, MIN_cur(10%) = 1.5 A spd_factor = CLAMP((adc2_fixdt - (ADC2_MIN_CAL << 16)) / (ADC2_MAX_CAL - ADC2_MIN_CAL), 3276, 65535); // ADC2, MIN_spd(5%) = 50 rpm // Update maximum limits rtP_Left.i_max = (int16_t)((I_MOT_MAX * A2BIT_CONV * cur_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4) rtP_Left.n_max = (int16_t)((N_MOT_MAX * spd_factor) >> 12); // fixdt(0,16,16) to fixdt(1,16,4) rtP_Right.i_max = rtP_Left.i_max; rtP_Right.n_max = rtP_Left.n_max; cur_spd_valid = 1; consoleLog("OK\n"); #endif } /* * Save Configuration to Flash * This function makes sure data is not lost after power-off */ void saveConfig() { #ifdef VARIANT_TRANSPOTTER if (saveValue_valid) { HAL_FLASH_Unlock(); EE_WriteVariable(VirtAddVarTab[0], saveValue); HAL_FLASH_Lock(); } #endif #ifdef CONTROL_ADC if (adc_cal_valid || cur_spd_valid) { HAL_FLASH_Unlock(); EE_WriteVariable(VirtAddVarTab[0], FLASH_WRITE_KEY); EE_WriteVariable(VirtAddVarTab[1], ADC1_MIN_CAL); EE_WriteVariable(VirtAddVarTab[2], ADC1_MAX_CAL); EE_WriteVariable(VirtAddVarTab[3], ADC1_MID_CAL); EE_WriteVariable(VirtAddVarTab[4], ADC2_MIN_CAL); EE_WriteVariable(VirtAddVarTab[5], ADC2_MAX_CAL); EE_WriteVariable(VirtAddVarTab[6], ADC2_MID_CAL); EE_WriteVariable(VirtAddVarTab[7], rtP_Left.i_max); EE_WriteVariable(VirtAddVarTab[8], rtP_Left.n_max); HAL_FLASH_Lock(); } #endif } /* =========================== Poweroff Functions =========================== */ void poweroff(void) { buzzerPattern = 0; enable = 0; consoleLog("-- Motors disabled --\r\n"); for (int i = 0; i < 8; i++) { buzzerFreq = (uint8_t)i; HAL_Delay(100); } saveConfig(); HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_RESET); while(1) {} } void poweroffPressCheck(void) { #if defined(CONTROL_ADC) if(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { enable = 0; uint16_t cnt_press = 0; while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); if (cnt_press++ == 5 * 100) { shortBeep(5); } } if (cnt_press >= 5 * 100) { // Check if press is more than 5 sec HAL_Delay(300); if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { // Double press: Adjust Max Current, Max Speed while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } longBeep(8); updateCurSpdLim(); shortBeep(5); } else { // Long press: Calibrate ADC Limits longBeep(16); adcCalibLim(); shortBeep(5); } } else { // Short press: power off poweroff(); } } #elif defined(VARIANT_TRANSPOTTER) if(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { enable = 0; while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } shortBeep(5); HAL_Delay(300); if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); } longBeep(5); HAL_Delay(350); poweroff(); } else { setDistance += 0.25; if (setDistance > 2.6) { setDistance = 0.5; } shortBeep(setDistance / 0.25); saveValue = setDistance * 1000; saveValue_valid = 1; } } #else if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { enable = 0; // disable motors while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released poweroff(); // release power-latch } #endif } /* =========================== Read Command Function =========================== */ void readCommand(void) { #if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK) if (nunchuk_connected != 0) { Nunchuk_Read(); cmd1 = CLAMP((nunchuk_data[0] - 127) * 8, INPUT_MIN, INPUT_MAX); // x - axis. Nunchuk joystick readings range 30 - 230 cmd2 = CLAMP((nunchuk_data[1] - 128) * 8, INPUT_MIN, INPUT_MAX); // y - axis #ifdef SUPPORT_BUTTONS button1 = (uint8_t)nunchuk_data[5] & 1; button2 = (uint8_t)(nunchuk_data[5] >> 1) & 1; #endif } #endif #ifdef CONTROL_PPM cmd1 = CLAMP(addDeadBand((ppm_captured_value[0] - 500) * 2, PPM_DEADBAND, PPM_CH1_MIN, PPM_CH1_MAX), INPUT_MIN, INPUT_MAX); cmd2 = CLAMP(addDeadBand((ppm_captured_value[1] - 500) * 2, PPM_DEADBAND, PPM_CH2_MIN, PPM_CH2_MAX), INPUT_MIN, INPUT_MAX); #ifdef SUPPORT_BUTTONS button1 = ppm_captured_value[5] > 500; button2 = 0; #endif // float scale = ppm_captured_value[2] / 1000.0f; // not used for now, uncomment if needed #endif #ifdef CONTROL_PWM cmd1 = CLAMP(addDeadBand((pwm_captured_ch1_value - 500) * 2, PWM_DEADBAND, PWM_CH1_MIN, PWM_CH1_MAX), INPUT_MIN, INPUT_MAX); cmd2 = CLAMP(addDeadBand((pwm_captured_ch2_value - 500) * 2, PWM_DEADBAND, PWM_CH2_MIN, PWM_CH2_MAX), INPUT_MIN, INPUT_MAX); #ifdef SUPPORT_BUTTONS button1 = !HAL_GPIO_ReadPin(BUTTON1_RIGHT_PORT, BUTTON1_RIGHT_PIN); button2 = !HAL_GPIO_ReadPin(BUTTON2_RIGHT_PORT, BUTTON2_RIGHT_PIN); #endif #endif #ifdef CONTROL_ADC // ADC values range: 0-4095, see ADC-calibration in config.h #ifdef ADC1_MID_POT cmd1 = CLAMP((adc_buffer.l_tx2 - ADC1_MID_CAL) * INPUT_MAX / (ADC1_MAX_CAL - ADC1_MID_CAL), 0, INPUT_MAX) -CLAMP((ADC1_MID_CAL - adc_buffer.l_tx2) * INPUT_MAX / (ADC1_MID_CAL - ADC1_MIN_CAL), 0, INPUT_MAX); // ADC1 #else cmd1 = CLAMP((adc_buffer.l_tx2 - ADC1_MIN_CAL) * INPUT_MAX / (ADC1_MAX_CAL - ADC1_MIN_CAL), 0, INPUT_MAX); // ADC1 #endif #ifdef ADC2_MID_POT cmd2 = CLAMP((adc_buffer.l_rx2 - ADC2_MID_CAL) * INPUT_MAX / (ADC2_MAX_CAL - ADC2_MID_CAL), 0, INPUT_MAX) -CLAMP((ADC2_MID_CAL - adc_buffer.l_rx2) * INPUT_MAX / (ADC2_MID_CAL - ADC2_MIN_CAL), 0, INPUT_MAX); // ADC2 #else cmd2 = CLAMP((adc_buffer.l_rx2 - ADC2_MIN_CAL) * INPUT_MAX / (ADC2_MAX_CAL - ADC2_MIN_CAL), 0, INPUT_MAX); // ADC2 #endif #ifdef ADC_PROTECT_ENA if (adc_buffer.l_tx2 >= (ADC1_MIN_CAL - ADC_PROTECT_THRESH) && adc_buffer.l_tx2 <= (ADC1_MAX_CAL + ADC_PROTECT_THRESH) && adc_buffer.l_rx2 >= (ADC2_MIN_CAL - ADC_PROTECT_THRESH) && adc_buffer.l_rx2 <= (ADC2_MAX_CAL + ADC_PROTECT_THRESH)) { if (timeoutFlagADC) { // Check for previous timeout flag if (timeoutCntADC-- <= 0) // Timeout de-qualification timeoutFlagADC = 0; // Timeout flag cleared } else { timeoutCntADC = 0; // Reset the timeout counter } } else { if (timeoutCntADC++ >= ADC_PROTECT_TIMEOUT) { // Timeout qualification timeoutFlagADC = 1; // Timeout detected timeoutCntADC = ADC_PROTECT_TIMEOUT; // Limit timout counter value } } if (timeoutFlagADC) { // In case of timeout bring the system to a Safe State ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way cmd1 = 0; cmd2 = 0; } else { ctrlModReq = ctrlModReqRaw; // Follow the Mode request } #endif // use ADCs as button inputs: #ifdef SUPPORT_BUTTONS button1 = (uint8_t)(adc_buffer.l_tx2 > 2000); // ADC1 button2 = (uint8_t)(adc_buffer.l_rx2 > 2000); // ADC2 #endif timeout = 0; #endif #if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3) // Handle received data validity, timeout and fix out-of-sync if necessary #ifdef CONTROL_IBUS for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i+=2) { ibus_captured_value[(i/2)] = CLAMP(command.channels[i] + (command.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000 } cmd1 = CLAMP((ibus_captured_value[0] - 500) * 2, INPUT_MIN, INPUT_MAX); cmd2 = CLAMP((ibus_captured_value[1] - 500) * 2, INPUT_MIN, INPUT_MAX); #else if (IN_RANGE(command.steer, INPUT_MIN, INPUT_MAX) && IN_RANGE(command.speed, INPUT_MIN, INPUT_MAX)) { cmd1 = command.steer; cmd2 = command.speed; } #endif if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way cmd1 = 0; cmd2 = 0; } else { ctrlModReq = ctrlModReqRaw; // Follow the Mode request } timeout = 0; #endif #if defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) if (timeoutCntSerial_L++ >= SERIAL_TIMEOUT) { // Timeout qualification timeoutFlagSerial_L = 1; // Timeout detected timeoutCntSerial_L = SERIAL_TIMEOUT; // Limit timout counter value } timeoutFlagSerial = timeoutFlagSerial_L; #endif #if defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) if (timeoutCntSerial_R++ >= SERIAL_TIMEOUT) { // Timeout qualification timeoutFlagSerial_R = 1; // Timeout detected timeoutCntSerial_R = SERIAL_TIMEOUT; // Limit timout counter value } timeoutFlagSerial = timeoutFlagSerial_R; #endif #if defined(SIDEBOARD_SERIAL_USART2) && defined(SIDEBOARD_SERIAL_USART3) timeoutFlagSerial = timeoutFlagSerial_L || timeoutFlagSerial_R; #endif #ifdef VARIANT_HOVERCAR brakePressed = (uint8_t)(cmd1 > 50); #endif #ifdef VARIANT_TRANSPOTTER #ifdef GAMETRAK_CONNECTION_NORMAL cmd1 = adc_buffer.l_rx2; cmd2 = adc_buffer.l_tx2; #endif #ifdef GAMETRAK_CONNECTION_ALTERNATE cmd1 = adc_buffer.l_tx2; cmd2 = adc_buffer.l_rx2; #endif #endif } /* * Check for new data received on USART2 with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx * - this function is called for every USART IDLE line detection, in the USART interrupt handler */ void usart2_rx_check(void) { #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) static uint32_t old_pos; uint32_t pos; pos = rx_buffer_L_len - __HAL_DMA_GET_COUNTER(huart2.hdmarx); // Calculate current position in buffer #endif #if defined(DEBUG_SERIAL_USART2) if (pos != old_pos) { // Check change in received data if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one usart_process_debug(&rx_buffer_L[old_pos], pos - old_pos); // Process data } else { // "Overflow" buffer mode usart_process_debug(&rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First Process data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer usart_process_debug(&rx_buffer_L[0], pos); // Process remaining data } } } #endif // DEBUG_SERIAL_USART2 #ifdef CONTROL_SERIAL_USART2 uint8_t *ptr; if (pos != old_pos) { // Check change in received data ptr = (uint8_t *)&command_raw; // Initialize the pointer with command_raw address if (pos > old_pos && (pos - old_pos) == command_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length memcpy(ptr, &rx_buffer_L[old_pos], command_len); // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size) usart_process_command(&command_raw, &command, 2); // Process data } else if ((rx_buffer_L_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer ptr += rx_buffer_L_len - old_pos; // Move to correct position in command_raw memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data } usart_process_command(&command_raw, &command, 2); // Process data } } #endif // CONTROL_SERIAL_USART2 #ifdef SIDEBOARD_SERIAL_USART2 uint8_t *ptr; if (pos != old_pos) { // Check change in received data ptr = (uint8_t *)&Sideboard_L_raw; // Initialize the pointer with Sideboard_raw address if (pos > old_pos && (pos - old_pos) == Sideboard_L_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length memcpy(ptr, &rx_buffer_L[old_pos], Sideboard_L_len); // Copy data. This is possible only if Sideboard_raw is contiguous! (meaning all the structure members have the same size) usart_process_sideboard(&Sideboard_L_raw, &Sideboard_L, 2); // Process data } else if ((rx_buffer_L_len - old_pos + pos) == Sideboard_L_len) { // "Overflow" buffer mode: check if data length equals expected length memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer ptr += rx_buffer_L_len - old_pos; // Move to correct position in Sideboard_raw memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data } usart_process_sideboard(&Sideboard_L_raw, &Sideboard_L, 2); // Process data } } #endif // SIDEBOARD_SERIAL_USART2 #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) old_pos = pos; // Update old position if (old_pos == rx_buffer_L_len) { // Check and manually update if we reached end of buffer old_pos = 0; } #endif } /* * Check for new data received on USART3 with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx * - this function is called for every USART IDLE line detection, in the USART interrupt handler */ void usart3_rx_check(void) { #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) static uint32_t old_pos; uint32_t pos; pos = rx_buffer_R_len - __HAL_DMA_GET_COUNTER(huart3.hdmarx); // Calculate current position in buffer #endif #if defined(DEBUG_SERIAL_USART3) if (pos != old_pos) { // Check change in received data if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one usart_process_debug(&rx_buffer_R[old_pos], pos - old_pos); // Process data } else { // "Overflow" buffer mode usart_process_debug(&rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First Process data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer usart_process_debug(&rx_buffer_R[0], pos); // Process remaining data } } } #endif // DEBUG_SERIAL_USART3 #ifdef CONTROL_SERIAL_USART3 uint8_t *ptr; if (pos != old_pos) { // Check change in received data ptr = (uint8_t *)&command_raw; // Initialize the pointer with command_raw address if (pos > old_pos && (pos - old_pos) == command_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length memcpy(ptr, &rx_buffer_R[old_pos], command_len); // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size) usart_process_command(&command_raw, &command, 3); // Process data } else if ((rx_buffer_R_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer ptr += rx_buffer_R_len - old_pos; // Move to correct position in command_raw memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data } usart_process_command(&command_raw, &command, 3); // Process data } } #endif // CONTROL_SERIAL_USART3 #ifdef SIDEBOARD_SERIAL_USART3 uint8_t *ptr; if (pos != old_pos) { // Check change in received data ptr = (uint8_t *)&Sideboard_R_raw; // Initialize the pointer with Sideboard_raw address if (pos > old_pos && (pos - old_pos) == Sideboard_R_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length memcpy(ptr, &rx_buffer_R[old_pos], Sideboard_R_len); // Copy data. This is possible only if Sideboard_raw is contiguous! (meaning all the structure members have the same size) usart_process_sideboard(&Sideboard_R_raw, &Sideboard_R, 3); // Process data } else if ((rx_buffer_R_len - old_pos + pos) == Sideboard_R_len) { // "Overflow" buffer mode: check if data length equals expected length memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer if (pos > 0) { // Check and continue with beginning of buffer ptr += rx_buffer_R_len - old_pos; // Move to correct position in Sideboard_raw memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data } usart_process_sideboard(&Sideboard_R_raw, &Sideboard_R, 3); // Process data } } #endif // SIDEBOARD_SERIAL_USART3 #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) old_pos = pos; // Update old position if (old_pos == rx_buffer_R_len) { // Check and manually update if we reached end of buffer old_pos = 0; } #endif } /* * Process Rx debug user command input */ #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) void usart_process_debug(uint8_t *userCommand, uint32_t len) { for (; len > 0; len--, userCommand++) { if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands consoleLog("-- Command received --\r\n"); // handle_input(*userCommand); // -> Create this function to handle the user commands } } } #endif // SERIAL_DEBUG /* * Process command Rx data * - if the command_in data is valid (correct START_FRAME and checksum) copy the command_in to command_out */ #if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3) void usart_process_command(SerialCommand *command_in, SerialCommand *command_out, uint8_t usart_idx) { #ifdef CONTROL_IBUS if (command_in->start == IBUS_LENGTH && command_in->type == IBUS_COMMAND) { ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND; for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i++) { ibus_chksum -= command_in->channels[i]; } if (ibus_chksum == (uint16_t)((command_in->checksumh << 8) + command_in->checksuml)) { *command_out = *command_in; if (usart_idx == 2) { // Sideboard USART2 #ifdef CONTROL_SERIAL_USART2 timeoutCntSerial_L = 0; // Reset timeout counter timeoutFlagSerial_L = 0; // Clear timeout flag #endif } else if (usart_idx == 3) { // Sideboard USART3 #ifdef CONTROL_SERIAL_USART3 timeoutCntSerial_R = 0; // Reset timeout counter timeoutFlagSerial_R = 0; // Clear timeout flag #endif } } } #else uint16_t checksum; if (command_in->start == SERIAL_START_FRAME) { checksum = (uint16_t)(command_in->start ^ command_in->steer ^ command_in->speed); if (command_in->checksum == checksum) { *command_out = *command_in; if (usart_idx == 2) { // Sideboard USART2 #ifdef CONTROL_SERIAL_USART2 timeoutCntSerial_L = 0; // Reset timeout counter timeoutFlagSerial_L = 0; // Clear timeout flag #endif } else if (usart_idx == 3) { // Sideboard USART3 #ifdef CONTROL_SERIAL_USART3 timeoutCntSerial_R = 0; // Reset timeout counter timeoutFlagSerial_R = 0; // Clear timeout flag #endif } } } #endif } #endif /* * Process Sideboard Rx data * - if the Sideboard_in data is valid (correct START_FRAME and checksum) copy the Sideboard_in to Sideboard_out */ #if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3) void usart_process_sideboard(SerialSideboard *Sideboard_in, SerialSideboard *Sideboard_out, uint8_t usart_idx) { uint16_t checksum; if (Sideboard_in->start == SERIAL_START_FRAME) { checksum = (uint16_t)(Sideboard_in->start ^ Sideboard_in->roll ^ Sideboard_in->pitch ^ Sideboard_in->yaw ^ Sideboard_in->sensors); if (Sideboard_in->checksum == checksum) { *Sideboard_out = *Sideboard_in; if (usart_idx == 2) { // Sideboard USART2 #ifdef SIDEBOARD_SERIAL_USART2 timeoutCntSerial_L = 0; // Reset timeout counter timeoutFlagSerial_L = 0; // Clear timeout flag #endif } else if (usart_idx == 3) { // Sideboard USART3 #ifdef SIDEBOARD_SERIAL_USART3 timeoutCntSerial_R = 0; // Reset timeout counter timeoutFlagSerial_R = 0; // Clear timeout flag #endif } } } } #endif /* * UART User Error Callback * - According to the STM documentation, when a DMA transfer error occurs during a DMA read or a write access, * the faulty channel is automatically disabled through a hardware clear of its EN bit * - For hoverboard applications, the UART communication can be unrealiable, disablind the DMA transfer * - therefore the DMA needs to be re-started */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *uartHandle) { #if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART2) if(uartHandle->Instance == USART2) { HAL_UART_Receive_DMA(uartHandle, (uint8_t *)rx_buffer_L, sizeof(rx_buffer_L)); } #endif #if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3) || defined(SIDEBOARD_SERIAL_USART3) if(uartHandle->Instance == USART3) { HAL_UART_Receive_DMA(uartHandle, (uint8_t *)rx_buffer_R, sizeof(rx_buffer_R)); } #endif } /* * Add Dead-band to a signal * This function realizes a dead-band around 0 and scales the input within a min and a max */ int addDeadBand(int16_t u, int16_t deadBand, int16_t min, int16_t max) { #if defined(CONTROL_PPM) || defined(CONTROL_PWM) int outVal = 0; if(u > -deadBand && u < deadBand) { outVal = 0; } else if(u > 0) { outVal = (INPUT_MAX * CLAMP(u - deadBand, 0, max - deadBand)) / (max - deadBand); } else { outVal = (INPUT_MIN * CLAMP(u + deadBand, min + deadBand, 0)) / (min + deadBand); } return outVal; #else return 0; #endif } /* =========================== Sideboard Functions =========================== */ /* * Sideboard LEDs Handling * This function manages the leds behavior connected to the sideboard */ void sideboardLeds(uint8_t *leds) { #if defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3) // Enable flag: use LED4 (bottom Blue) // enable == 1, turn on led // enable == 0, blink led if (enable) { *leds |= LED4_SET; } else if (!enable && (main_loop_counter % 20 == 0)) { *leds ^= LED4_SET; } // Backward Drive: use LED5 (upper Blue) // backwardDrive == 1, blink led // backwardDrive == 0, turn off led if (backwardDrive && (main_loop_counter % 50 == 0)) { *leds ^= LED5_SET; } // Brake: use LED5 (upper Blue) // brakePressed == 1, turn on led // brakePressed == 0, turn off led #ifdef VARIANT_HOVERCAR if (brakePressed) { *leds |= LED5_SET; } else if (!brakePressed && !backwardDrive) { *leds &= ~LED5_SET; } #endif // Battery Level Indicator: use LED1, LED2, LED3 if (main_loop_counter % BAT_BLINK_INTERVAL == 0) { // | RED (LED1) | YELLOW (LED3) | GREEN (LED2) | if (batVoltage < BAT_DEAD) { // | 0 | 0 | 0 | *leds &= ~LED1_SET & ~LED3_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL1) { // | B | 0 | 0 | *leds ^= LED1_SET; *leds &= ~LED3_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL2) { // | 1 | 0 | 0 | *leds |= LED1_SET; *leds &= ~LED3_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL3) { // | 0 | B | 0 | *leds ^= LED3_SET; *leds &= ~LED1_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL4) { // | 0 | 1 | 0 | *leds |= LED3_SET; *leds &= ~LED1_SET & ~LED2_SET; } else if (batVoltage < BAT_LVL5) { // | 0 | 0 | B | *leds ^= LED2_SET; *leds &= ~LED1_SET & ~LED3_SET; } else { // | 0 | 0 | 1 | *leds |= LED2_SET; *leds &= ~LED1_SET & ~LED3_SET; } } // Error handling // Critical error: LED1 on (RED) + high pitch beep (hadled in main) // Soft error: LED3 on (YELLOW) + low pitch beep (hadled in main) if (rtY_Left.z_errCode || rtY_Right.z_errCode) { *leds |= LED1_SET; *leds &= ~LED3_SET & ~LED2_SET; } if (timeoutFlagADC || timeoutFlagSerial) { *leds |= LED3_SET; *leds &= ~LED1_SET & ~LED2_SET; } #endif } /* * Sideboard Sensor Handling * This function manages the sideboards photo sensors. * In non-hoverboard variants, the sensors are used as push buttons. */ void sideboardSensors(uint8_t sensors) { #if !defined(VARIANT_HOVERBOARD) && (defined(SIDEBOARD_SERIAL_USART2) || defined(SIDEBOARD_SERIAL_USART3)) uint8_t sensor1_rising_edge, sensor2_rising_edge; sensor1_rising_edge = (sensors & SENSOR1_SET) && !sensor1_prev; sensor2_rising_edge = (sensors & SENSOR2_SET) && !sensor2_prev; sensor1_prev = sensors & SENSOR1_SET; sensor2_prev = sensors & SENSOR2_SET; // Control MODE and Control Type Handling: use Sensor1 as push button if (sensor1_rising_edge) { sensor1_index++; if (sensor1_index > 4) { sensor1_index = 0; } switch (sensor1_index) { case 0: // FOC VOLTAGE rtP_Left.z_ctrlTypSel = 2; rtP_Right.z_ctrlTypSel = 2; ctrlModReqRaw = 1; break; case 1: // FOC SPEED ctrlModReqRaw = 2; break; case 2: // FOC TORQUE ctrlModReqRaw = 3; break; case 3: // SINUSOIDAL rtP_Left.z_ctrlTypSel = 1; rtP_Right.z_ctrlTypSel = 1; break; case 4: // COMMUTATION rtP_Left.z_ctrlTypSel = 0; rtP_Right.z_ctrlTypSel = 0; break; } shortBeepMany(sensor1_index + 1); } // Field Weakening: use Sensor2 as push button if (sensor2_rising_edge) { sensor2_index++; if (sensor2_index > 1) { sensor2_index = 0; } switch (sensor2_index) { case 0: // FW Disabled rtP_Left.b_fieldWeakEna = 0; rtP_Right.b_fieldWeakEna = 0; Input_Lim_Init(); break; case 1: // FW Enabled rtP_Left.b_fieldWeakEna = 1; rtP_Right.b_fieldWeakEna = 1; Input_Lim_Init(); break; } shortBeepMany(sensor2_index + 1); } #endif } /* =========================== Filtering Functions =========================== */ /* Low pass filter fixed-point 32 bits: fixdt(1,32,20) * Max: 2047.9375 * Min: -2048 * Res: 0.0625 * * Inputs: u = int16 or int32 * Outputs: y = fixdt(1,32,16) * Parameters: coef = fixdt(0,16,16) = [0,65535U] * * Example: * If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point) * filtLowPass16(u, 52429, &y); * yint = (int16_t)(y >> 16); // the integer output is the fixed-point ouput shifted by 16 bits */ void filtLowPass32(int32_t u, uint16_t coef, int32_t *y) { int64_t tmp; tmp = ((int64_t)((u << 4) - (*y >> 12)) * coef) >> 4; tmp = CLAMP(tmp, -2147483648LL, 2147483647LL); // Overflow protection: 2147483647LL = 2^31 - 1 *y = (int32_t)tmp + (*y); } // Old filter // Inputs: u = int16 // Outputs: y = fixdt(1,32,20) // Parameters: coef = fixdt(0,16,16) = [0,65535U] // yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits // void filtLowPass32(int16_t u, uint16_t coef, int32_t *y) { // int32_t tmp; // tmp = (int16_t)(u << 4) - (*y >> 16); // tmp = CLAMP(tmp, -32768, 32767); // Overflow protection // *y = coef * tmp + (*y); // } /* rateLimiter16(int16_t u, int16_t rate, int16_t *y); * Inputs: u = int16 * Outputs: y = fixdt(1,16,4) * Parameters: rate = fixdt(1,16,4) = [0, 32767] Do NOT make rate negative (>32767) */ void rateLimiter16(int16_t u, int16_t rate, int16_t *y) { int16_t q0; int16_t q1; q0 = (u << 4) - *y; if (q0 > rate) { q0 = rate; } else { q1 = -rate; if (q0 < q1) { q0 = q1; } } *y = q0 + *y; } /* mixerFcn(rtu_speed, rtu_steer, &rty_speedR, &rty_speedL); * Inputs: rtu_speed, rtu_steer = fixdt(1,16,4) * Outputs: rty_speedR, rty_speedL = int16_t * Parameters: SPEED_COEFFICIENT, STEER_COEFFICIENT = fixdt(0,16,14) */ void mixerFcn(int16_t rtu_speed, int16_t rtu_steer, int16_t *rty_speedR, int16_t *rty_speedL) { int16_t prodSpeed; int16_t prodSteer; int32_t tmp; prodSpeed = (int16_t)((rtu_speed * (int16_t)SPEED_COEFFICIENT) >> 14); prodSteer = (int16_t)((rtu_steer * (int16_t)STEER_COEFFICIENT) >> 14); tmp = prodSpeed - prodSteer; tmp = CLAMP(tmp, -32768, 32767); // Overflow protection *rty_speedR = (int16_t)(tmp >> 4); // Convert from fixed-point to int *rty_speedR = CLAMP(*rty_speedR, INPUT_MIN, INPUT_MAX); tmp = prodSpeed + prodSteer; tmp = CLAMP(tmp, -32768, 32767); // Overflow protection *rty_speedL = (int16_t)(tmp >> 4); // Convert from fixed-point to int *rty_speedL = CLAMP(*rty_speedL, INPUT_MIN, INPUT_MAX); } /* =========================== Multiple Tap Function =========================== */ /* multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x) * This function detects multiple tap presses, such as double tapping, triple tapping, etc. * Inputs: u = int16_t (input signal); timeNow = uint32_t (current time) * Outputs: x->b_multipleTap (get the output here) */ void multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x) { uint8_t b_timeout; uint8_t b_hyst; uint8_t b_pulse; uint8_t z_pulseCnt; uint8_t z_pulseCntRst; uint32_t t_time; // Detect hysteresis if (x->b_hysteresis) { b_hyst = (u > MULTIPLE_TAP_LO); } else { b_hyst = (u > MULTIPLE_TAP_HI); } // Detect pulse b_pulse = (b_hyst != x->b_hysteresis); // Save time when first pulse is detected if (b_hyst && b_pulse && (x->z_pulseCntPrev == 0)) { t_time = timeNow; } else { t_time = x->t_timePrev; } // Create timeout boolean b_timeout = (timeNow - t_time > MULTIPLE_TAP_TIMEOUT); // Create pulse counter if ((!b_hyst) && (x->z_pulseCntPrev == 0)) { z_pulseCnt = 0U; } else { z_pulseCnt = b_pulse; } // Reset counter if we detected complete tap presses OR there is a timeout if ((x->z_pulseCntPrev >= MULTIPLE_TAP_NR) || b_timeout) { z_pulseCntRst = 0U; } else { z_pulseCntRst = x->z_pulseCntPrev; } z_pulseCnt = z_pulseCnt + z_pulseCntRst; // Check if complete tap presses are detected AND no timeout if ((z_pulseCnt >= MULTIPLE_TAP_NR) && (!b_timeout)) { x->b_multipleTap = !x->b_multipleTap; // Toggle output } // Update states x->z_pulseCntPrev = z_pulseCnt; x->b_hysteresis = b_hyst; x->t_timePrev = t_time; }