#include #define SERIAL_BAUD 115200 // [-] Baud rate for built-in Serial (used for the Serial Monitor) #include #include #include #include //128 x 64 px #define SCREEN_WIDTH 128 #define SCREEN_HEIGHT 64 #define SCREEN_ADDRESS 0x3C #define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin) Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET); #define DISPLAYUPDATE_INTERVAL 200 uint8_t error = 0; #define IMU_NO_CHANGE 2 //IMU values did not change for too long #include "hoverboard-esc-serial-comm.h" ESCSerialComm esc(Serial2); //Serial1 = TX1=1, RX1=0 //Serial2 = TX2=10, RX2=9 //Serial3 = TX3=8, RX3=7 #define PIN_GAMETRAK_LENGTH_A A6 //A6=20 #define PIN_GAMETRAK_LENGTH_B A7 //A7=21 #define PIN_GAMETRAK_VERTICAL A8 //A8=22 #define PIN_GAMETRAK_HORIZONTAL A9 //A9=23 long last_adcupdated=0; #define ADC_UPDATEPERIOD 10 //in ms #define CONTROLUPDATEPERIOD 10 long last_controlupdate = 0; #define GT_LENGTH_MIN 200 //minimum length for stuff to start happen #define GT_LENGTH_1_OFFSET -22.5 #define GT_LENGTH_1_SCALE 2.5 #define GT_LENGTH_2_OFFSET 563.6 #define GT_LENGTH_2_SCALE 0.45 #define GT_LENGTH_CROSSOVERADC ((GT_LENGTH_2_OFFSET-GT_LENGTH_1_OFFSET)/(GT_LENGTH_1_SCALE-GT_LENGTH_2_SCALE)) //crossover point from adc, where first and second lines cross #define GT_LENGTH_CROSSOVER_FEATHER 76.0 //how much adc change in both directions should be smoothed when switching between first and second line #define GT_LENGTH_MAXLENGTH 2000 //maximum length in [mm]. maximum string length is around 2m80 #define GT_LENGTH_ADC_MAXDIFF 127 //maximum adc value difference between A and B poti. Used to detect scratching poti. during length calibration was 57 int raw_length_maxdiff=0; //TODO: implement error for poti maxdiff uint16_t gt_length=0; //0=rolled up, 1unit = 1mm /* calibration 20220410 lenght[mm], adc 0,9 100,52 200,86 300,124 400,165 500,212 600,286 700,376 800,520 900,746 1000,984 1100,1198 1200,1404 1300,1628 1400,1853 1500,2107 1600,2316 1700,2538 1800,2730 1900,2942 2000,3150 */ #define GT_VERTICAL_CENTER 2048 //adc value for center position #define GT_VERTICAL_RANGE 2047 //adc value difference from center to maximum (30 deg) int8_t gt_vertical=0; //0=center. joystick can rotate +-30 degrees. -127 = -30 deg //left = -30 deg, right= 30deg #define GT_HORIZONTAL_CENTER 2048 //adc value for center position #define GT_HORIZONTAL_RANGE 2047 //adc value difference from center to maximum (30 deg) int8_t gt_horizontal=0; //0=center uint16_t gt_length_set=1000; //set length to keep [mm] #define GT_LENGTH_MINDIFF 10 //[mm] threshold, do not move within gt_length_set-GT_LENGTH_MINDIFF and gt_length_set+GT_LENGTH_MINDIFF float gt_speed_p=0.7; //value to multipy difference [mm] with -> out_speed float gt_speedbackward_p=0.7; float gt_steer_p=2.0; #define GT_SPEED_LIMIT 300 //maximum out_speed value + #define GT_SPEEDBACKWARD_LIMIT 100//maximum out_speed value (for backward driving) - #define GT_STEER_LIMIT 300 //maximum out_steer value +- #define GT_LENGTH_MAXIMUMDIFFBACKWARD -200 //[mm]. if gt_length_set=1000 and GT_LENGTH_MAXIMUMDIFFBACKWARD=-200 then only drives backward if lenght is greater 800 #include #include "nRF24L01.h" #include "RF24.h" RF24 radio(14, 15); //ce, cs //SCK D13 (Pro mini), A5 (bluepill),13 (teensy32) //Miso D12 (Pro mini), A6 (bluepill),12 (teensy32) //Mosi D11 (Pro mini), A7 (bluepill),11 (teensy32) // Radio pipe addresses for the 2 nodes to communicate. const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL }; #define NRF24CHANNEL 75 struct nrfdata { uint8_t steer; uint8_t speed; uint8_t commands; //bit 0 set = motor enable uint8_t checksum; }; nrfdata lastnrfdata; long last_nrfreceive = 0; //last time values were received and checksum ok unsigned long nrf_delay = 0; unsigned long last_nrfreceive_delay=0; #define MAX_NRFDELAY 100 //ms. maximum time delay at which vehicle will disarm boolean radiosendOk=false; //command variables boolean motorenabled = false; //set by nrfdata.commands long last_send = 0; int16_t set_speed = 0; int16_t set_steer = 0; uint8_t out_checksum = 0; //0= disable motors, 255=reserved, 1<=checksum<255 #define NRFDATA_CENTER 127 //boolean armed = false; boolean lastpacketOK = false; //Gametrak //boolean armed_gt = false; uint8_t controlmode=0; #define MODE_DISARMED 0 #define MODE_RADIONRF 1 #define MODE_GAMETRAK 2 void updateDisplay(unsigned long loopmillis); void setup() { Serial.begin(SERIAL_BAUD); //Debug and Program esc.init(); analogReadResolution(12); pinMode(PIN_GAMETRAK_LENGTH_A, INPUT_PULLUP); pinMode(PIN_GAMETRAK_LENGTH_B, INPUT_PULLUP); pinMode(PIN_GAMETRAK_VERTICAL, INPUT_PULLUP); pinMode(PIN_GAMETRAK_HORIZONTAL, INPUT_PULLUP); Wire.begin(); // SSD1306_SWITCHCAPVCC = generate display voltage from 3.3V internally if(!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) { Serial.println(F("SSD1306 allocation failed")); for(;;); // Don't proceed, loop forever } // Show initial display buffer contents on the screen -- // the library initializes this with an Adafruit splash screen. display.display(); display.clearDisplay(); display.setTextSize(1); display.setTextColor(SSD1306_WHITE); display.setCursor(10, 0); display.println(F("Radio Init")); display.display(); // Show initial text radio.begin(); Serial.println("RF24 set rate"); radio.setDataRate( RF24_250KBPS ); //set to slow data rate. default was 1MBPS //radio.setDataRate( RF24_1MBPS ); //Serial.println("set channel"); radio.setChannel(NRF24CHANNEL); //0 to 124 (inclusive) //Serial.println("set retries and payload"); radio.setRetries(15, 15); // optionally, increase the delay between retries & # of retries radio.setPayloadSize(8); // optionally, reduce the payload size. seems to improve reliability //Serial.println("open pipe"); radio.openWritingPipe(pipes[0]); //write on pipe 0 radio.openReadingPipe(1, pipes[1]); //read on pipe 1 Serial.println("start listening"); radio.startListening(); display.clearDisplay(); display.setTextSize(2); // Draw 2X-scale text display.setTextColor(SSD1306_WHITE); display.setCursor(10, 0); display.println(F("Started")); display.display(); // Show initial text } void loop() { unsigned long loopmillis=millis(); if (loopmillis - last_adcupdated > ADC_UPDATEPERIOD) { //update analog readings int raw_length_a=analogRead(PIN_GAMETRAK_LENGTH_A); int raw_length_b=analogRead(PIN_GAMETRAK_LENGTH_B); raw_length_maxdiff=max(raw_length_maxdiff,abs(raw_length_a-raw_length_b)); int raw_length=(raw_length_a+raw_length_b)/2; uint16_t gt_length_1 = GT_LENGTH_1_OFFSET+raw_length*GT_LENGTH_1_SCALE; uint16_t gt_length_2 = GT_LENGTH_2_OFFSET+raw_length*GT_LENGTH_2_SCALE; double crossovermapping=constrain(((raw_length-GT_LENGTH_CROSSOVERADC)/GT_LENGTH_CROSSOVER_FEATHER )/2.0+0.5, 0.0,1.0); //0 for first, 1 for second gt_length = constrain( gt_length_1*(1-crossovermapping) + gt_length_2*crossovermapping , 0,GT_LENGTH_MAXLENGTH); if (gt_length<=GT_LENGTH_MIN){ gt_length=0; //if below minimum measurable length set to 0mm } gt_vertical = constrain(map(analogRead(PIN_GAMETRAK_VERTICAL)-((int16_t)GT_VERTICAL_CENTER), -GT_VERTICAL_RANGE,+GT_VERTICAL_RANGE,-127,127),-127,127); //left negative gt_horizontal = constrain(map(analogRead(PIN_GAMETRAK_HORIZONTAL)-((int16_t)GT_HORIZONTAL_CENTER), -GT_HORIZONTAL_RANGE,+GT_HORIZONTAL_RANGE,-127,127),-127,127); //down negative last_adcupdated = millis(); /* Serial.print("gt_length="); Serial.print(gt_length); Serial.print(", gt_vertical="); Serial.print(gt_vertical); Serial.print(", gt_horizontal="); Serial.print(gt_horizontal); Serial.print(" pl="); Serial.print(raw_length_a); Serial.print(", "); Serial.print(raw_length_b); Serial.print(", pv="); Serial.print(analogRead(PIN_GAMETRAK_VERTICAL)); Serial.print(", ph="); Serial.print(analogRead(PIN_GAMETRAK_HORIZONTAL)); Serial.print(" Ldiff="); Serial.println(abs(raw_length_a-raw_length_b)); */ /* static int _rawlengtharray[40]; static int _rawlapos=0; _rawlengtharray[_rawlapos++]=raw_length; _rawlapos%=40; int rawlengthfilter=0; for (int p=0;p<40;p++) { rawlengthfilter+=_rawlengtharray[p]; } rawlengthfilter/=40; static int maxldiff=0; maxldiff=max(maxldiff,abs(raw_length_a-raw_length_b)); Serial.print(""); Serial.print(rawlengthfilter); Serial.print(" maxldiff="); Serial.println(maxldiff);*/ } //NRF24 nrf_delay = loopmillis - last_nrfreceive; //update nrf delay if ( radio.available() ) { //Serial.println("radio available ..."); lastpacketOK = false; //initialize with false, if checksum ok gets set to true //digitalWrite(PIN_LED, !digitalRead(PIN_LED)); radio.read( &lastnrfdata, sizeof(nrfdata) ); if (lastnrfdata.speed == NRFDATA_CENTER && lastnrfdata.steer == NRFDATA_CENTER) { //arm only when centered controlmode = MODE_RADIONRF;//set radionrf mode at first received packet } uint8_t calcchecksum = (uint8_t)((lastnrfdata.steer + 3) * (lastnrfdata.speed + 13)); if (lastnrfdata.checksum == calcchecksum) { //checksum ok? lastpacketOK = true; last_nrfreceive_delay=loopmillis-last_nrfreceive; //for display purpose last_nrfreceive = loopmillis; //parse commands motorenabled = (lastnrfdata.commands & (1 << 0))>>0; //check bit 0 } } if (controlmode == MODE_RADIONRF && nrf_delay >= MAX_NRFDELAY) { //too long since last sucessful nrf receive controlmode = MODE_DISARMED; #ifdef DEBUG Serial.println("nrf_delay>=MAX_NRFDELAY, disarmed!"); #endif } if (controlmode == MODE_RADIONRF) { //is armed in nrf mode if (lastpacketOK) { //if lastnrfdata is valid if (loopmillis - last_controlupdate > CONTROLUPDATEPERIOD) { last_controlupdate = loopmillis; //out_speed=(int16_t)( (lastnrfdata.y-TRACKPOINT_CENTER)*1000/TRACKPOINT_MAX ); //out_steer=(int16_t)( -(lastnrfdata.x-TRACKPOINT_CENTER)*1000/TRACKPOINT_MAX ); set_speed = (int16_t)( ((int16_t)(lastnrfdata.speed) - NRFDATA_CENTER) * 1000 / 127 ); //-1000 to 1000 set_steer = (int16_t)( ((int16_t)(lastnrfdata.steer) - NRFDATA_CENTER) * 1000 / 127 ); //calculate speed l and r from speed and steer #define SPEED_COEFFICIENT_NRF 1 // higher value == stronger #define STEER_COEFFICIENT_NRF 0.5 // higher value == stronger int16_t _out_speedl,_out_speedr; _out_speedl = constrain(set_speed * SPEED_COEFFICIENT_NRF + set_steer * STEER_COEFFICIENT_NRF, -1500, 1500); _out_speedr = constrain(set_speed * SPEED_COEFFICIENT_NRF - set_steer * STEER_COEFFICIENT_NRF, -1500, 1500); esc.setSpeed(_out_speedl,_out_speedr); } }//if pastpacket not ok, keep last out_steer and speed values until disarmed #ifdef DEBUG if (!lastpacketOK) { Serial.println("Armed but packet not ok"); } #endif } if (controlmode==MODE_DISARMED) { //check if gametrak can be armed if (gt_length>gt_length_set && gt_length-GT_LENGTH_MINDIFF) && (_gt_length_diff0) { //needs to drive forward set_speed = constrain((int16_t)(_gt_length_diff*gt_speed_p),0,GT_SPEED_LIMIT); }else{ //drive backward if (_gt_length_diff > GT_LENGTH_MAXIMUMDIFFBACKWARD){ //only drive if not pulled back too much set_speed = constrain((int16_t)(_gt_length_diff*gt_speedbackward_p),-GT_SPEEDBACKWARD_LIMIT,0); }else{ set_speed = 0; //stop set_steer = 0; } } //calculate speed l and r from speed and steer #define SPEED_COEFFICIENT_GT 1 // higher value == stronger #define STEER_COEFFICIENT_GT 0.5 // higher value == stronger int16_t _out_speedl,_out_speedr; _out_speedl = constrain(set_speed * SPEED_COEFFICIENT_GT + set_steer * STEER_COEFFICIENT_GT, -1000, 1000); _out_speedr = constrain(set_speed * SPEED_COEFFICIENT_GT - set_steer * STEER_COEFFICIENT_GT, -1000, 1000); esc.setSpeed(_out_speedl,_out_speedr); } if (error > 0) { //disarm if error occured controlmode = MODE_DISARMED; //force disarmed } if (controlmode == MODE_DISARMED){ //all disarmed esc.setSpeed(0,0); } if (esc.sendPending(loopmillis)) { //calculate checksum out_checksum = ((uint8_t) ((uint8_t)esc.getCmdL()) * ((uint8_t)esc.getCmdR())); //simple checksum if (out_checksum == 0 || out_checksum == 255) { out_checksum = 1; //cannot be 0 or 255 (special purpose) } if (!motorenabled) { //disable motors? out_checksum = 0; //checksum=0 disables motors } if (!motorenabled) {//motors disabled esc.setSpeed(0,0); } last_send = loopmillis; #ifdef DEBUG Serial.print(" out_speedl="); Serial.print(out_speedl); Serial.print(" out_speedr="); Serial.print(out_speedr); Serial.print(" checksum="); Serial.print(out_checksum); Serial.print(" controlmode="); Serial.print(controlmode); Serial.println(); #endif } esc.update(loopmillis); updateDisplay(loopmillis); } void updateDisplay(unsigned long loopmillis) { static unsigned long last_updatedisplay=0; if (loopmillis-last_updatedisplay>DISPLAYUPDATE_INTERVAL) { display.clearDisplay(); display.setTextSize(1); display.setTextColor(SSD1306_WHITE); display.setCursor(1, 0); display.print(F("MODE=")); switch(controlmode) { case MODE_DISARMED: display.println(F("DISARMED")); break; case MODE_RADIONRF: display.println(F("RADIONRF")); break; case MODE_GAMETRAK: display.println(F("GAMETRAK")); break; default: display.println(F("UNDEF")); break; } display.print(F("nrf_delay=")); display.println(last_nrfreceive_delay); display.print(F("gt_length=")); display.println(gt_length); display.print(F("maxdiff=")); display.println(raw_length_maxdiff); display.print(F("CMD=")); display.print(esc.getCmdL()); display.print(F(", ")); display.println(esc.getCmdR()); display.display(); // Show initial text last_updatedisplay=loopmillis; } }