using xz embedded (public domain code). in order to be enable to use ordinary xz files, support for crc64 was activated. (if using crc32 only, one would need to use a command like xz --check=crc32 --lzma2=preset=6e,dict=64KiB to create the files. with crc64, one can use files that have been compressed with settings up to -9 (however, those need 64+1MB for decompression). since gb/gbc files are small anyway, using compression level 6-8 might be preferable to keep client memory consumption down. every step in xz compression level downwards decreases decomp mem usage by 50% (so level 8 would need 32+1 MB, etc).master
parent
ced1c92879
commit
5056b238a2
@ -0,0 +1,10 @@
|
||||
|
||||
Licensing of XZ Embedded
|
||||
========================
|
||||
|
||||
All the files in this package have been written by Lasse Collin
|
||||
and/or Igor Pavlov. All these files have been put into the
|
||||
public domain. You can do whatever you want with these files.
|
||||
|
||||
As usual, this software is provided "as is", without any warranty.
|
||||
|
@ -0,0 +1,304 @@
|
||||
/*
|
||||
* XZ decompressor
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_H
|
||||
#define XZ_H
|
||||
|
||||
#ifdef __KERNEL__
|
||||
# include <linux/stddef.h>
|
||||
# include <linux/types.h>
|
||||
#else
|
||||
# include <stddef.h>
|
||||
# include <stdint.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* In Linux, this is used to make extern functions static when needed. */
|
||||
#ifndef XZ_EXTERN
|
||||
# define XZ_EXTERN extern
|
||||
#endif
|
||||
|
||||
/**
|
||||
* enum xz_mode - Operation mode
|
||||
*
|
||||
* @XZ_SINGLE: Single-call mode. This uses less RAM than
|
||||
* than multi-call modes, because the LZMA2
|
||||
* dictionary doesn't need to be allocated as
|
||||
* part of the decoder state. All required data
|
||||
* structures are allocated at initialization,
|
||||
* so xz_dec_run() cannot return XZ_MEM_ERROR.
|
||||
* @XZ_PREALLOC: Multi-call mode with preallocated LZMA2
|
||||
* dictionary buffer. All data structures are
|
||||
* allocated at initialization, so xz_dec_run()
|
||||
* cannot return XZ_MEM_ERROR.
|
||||
* @XZ_DYNALLOC: Multi-call mode. The LZMA2 dictionary is
|
||||
* allocated once the required size has been
|
||||
* parsed from the stream headers. If the
|
||||
* allocation fails, xz_dec_run() will return
|
||||
* XZ_MEM_ERROR.
|
||||
*
|
||||
* It is possible to enable support only for a subset of the above
|
||||
* modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC,
|
||||
* or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled
|
||||
* with support for all operation modes, but the preboot code may
|
||||
* be built with fewer features to minimize code size.
|
||||
*/
|
||||
enum xz_mode {
|
||||
XZ_SINGLE,
|
||||
XZ_PREALLOC,
|
||||
XZ_DYNALLOC
|
||||
};
|
||||
|
||||
/**
|
||||
* enum xz_ret - Return codes
|
||||
* @XZ_OK: Everything is OK so far. More input or more
|
||||
* output space is required to continue. This
|
||||
* return code is possible only in multi-call mode
|
||||
* (XZ_PREALLOC or XZ_DYNALLOC).
|
||||
* @XZ_STREAM_END: Operation finished successfully.
|
||||
* @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding
|
||||
* is still possible in multi-call mode by simply
|
||||
* calling xz_dec_run() again.
|
||||
* Note that this return value is used only if
|
||||
* XZ_DEC_ANY_CHECK was defined at build time,
|
||||
* which is not used in the kernel. Unsupported
|
||||
* check types return XZ_OPTIONS_ERROR if
|
||||
* XZ_DEC_ANY_CHECK was not defined at build time.
|
||||
* @XZ_MEM_ERROR: Allocating memory failed. This return code is
|
||||
* possible only if the decoder was initialized
|
||||
* with XZ_DYNALLOC. The amount of memory that was
|
||||
* tried to be allocated was no more than the
|
||||
* dict_max argument given to xz_dec_init().
|
||||
* @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than
|
||||
* allowed by the dict_max argument given to
|
||||
* xz_dec_init(). This return value is possible
|
||||
* only in multi-call mode (XZ_PREALLOC or
|
||||
* XZ_DYNALLOC); the single-call mode (XZ_SINGLE)
|
||||
* ignores the dict_max argument.
|
||||
* @XZ_FORMAT_ERROR: File format was not recognized (wrong magic
|
||||
* bytes).
|
||||
* @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
|
||||
* compression options. In the decoder this means
|
||||
* that the header CRC32 matches, but the header
|
||||
* itself specifies something that we don't support.
|
||||
* @XZ_DATA_ERROR: Compressed data is corrupt.
|
||||
* @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
|
||||
* different between multi-call and single-call
|
||||
* mode; more information below.
|
||||
*
|
||||
* In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
|
||||
* to XZ code cannot consume any input and cannot produce any new output.
|
||||
* This happens when there is no new input available, or the output buffer
|
||||
* is full while at least one output byte is still pending. Assuming your
|
||||
* code is not buggy, you can get this error only when decoding a compressed
|
||||
* stream that is truncated or otherwise corrupt.
|
||||
*
|
||||
* In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
|
||||
* is too small or the compressed input is corrupt in a way that makes the
|
||||
* decoder produce more output than the caller expected. When it is
|
||||
* (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
|
||||
* is used instead of XZ_BUF_ERROR.
|
||||
*/
|
||||
enum xz_ret {
|
||||
XZ_OK,
|
||||
XZ_STREAM_END,
|
||||
XZ_UNSUPPORTED_CHECK,
|
||||
XZ_MEM_ERROR,
|
||||
XZ_MEMLIMIT_ERROR,
|
||||
XZ_FORMAT_ERROR,
|
||||
XZ_OPTIONS_ERROR,
|
||||
XZ_DATA_ERROR,
|
||||
XZ_BUF_ERROR
|
||||
};
|
||||
|
||||
/**
|
||||
* struct xz_buf - Passing input and output buffers to XZ code
|
||||
* @in: Beginning of the input buffer. This may be NULL if and only
|
||||
* if in_pos is equal to in_size.
|
||||
* @in_pos: Current position in the input buffer. This must not exceed
|
||||
* in_size.
|
||||
* @in_size: Size of the input buffer
|
||||
* @out: Beginning of the output buffer. This may be NULL if and only
|
||||
* if out_pos is equal to out_size.
|
||||
* @out_pos: Current position in the output buffer. This must not exceed
|
||||
* out_size.
|
||||
* @out_size: Size of the output buffer
|
||||
*
|
||||
* Only the contents of the output buffer from out[out_pos] onward, and
|
||||
* the variables in_pos and out_pos are modified by the XZ code.
|
||||
*/
|
||||
struct xz_buf {
|
||||
const uint8_t *in;
|
||||
size_t in_pos;
|
||||
size_t in_size;
|
||||
|
||||
uint8_t *out;
|
||||
size_t out_pos;
|
||||
size_t out_size;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct xz_dec - Opaque type to hold the XZ decoder state
|
||||
*/
|
||||
struct xz_dec;
|
||||
|
||||
/**
|
||||
* xz_dec_init() - Allocate and initialize a XZ decoder state
|
||||
* @mode: Operation mode
|
||||
* @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for
|
||||
* multi-call decoding. This is ignored in single-call mode
|
||||
* (mode == XZ_SINGLE). LZMA2 dictionary is always 2^n bytes
|
||||
* or 2^n + 2^(n-1) bytes (the latter sizes are less common
|
||||
* in practice), so other values for dict_max don't make sense.
|
||||
* In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB,
|
||||
* 512 KiB, and 1 MiB are probably the only reasonable values,
|
||||
* except for kernel and initramfs images where a bigger
|
||||
* dictionary can be fine and useful.
|
||||
*
|
||||
* Single-call mode (XZ_SINGLE): xz_dec_run() decodes the whole stream at
|
||||
* once. The caller must provide enough output space or the decoding will
|
||||
* fail. The output space is used as the dictionary buffer, which is why
|
||||
* there is no need to allocate the dictionary as part of the decoder's
|
||||
* internal state.
|
||||
*
|
||||
* Because the output buffer is used as the workspace, streams encoded using
|
||||
* a big dictionary are not a problem in single-call mode. It is enough that
|
||||
* the output buffer is big enough to hold the actual uncompressed data; it
|
||||
* can be smaller than the dictionary size stored in the stream headers.
|
||||
*
|
||||
* Multi-call mode with preallocated dictionary (XZ_PREALLOC): dict_max bytes
|
||||
* of memory is preallocated for the LZMA2 dictionary. This way there is no
|
||||
* risk that xz_dec_run() could run out of memory, since xz_dec_run() will
|
||||
* never allocate any memory. Instead, if the preallocated dictionary is too
|
||||
* small for decoding the given input stream, xz_dec_run() will return
|
||||
* XZ_MEMLIMIT_ERROR. Thus, it is important to know what kind of data will be
|
||||
* decoded to avoid allocating excessive amount of memory for the dictionary.
|
||||
*
|
||||
* Multi-call mode with dynamically allocated dictionary (XZ_DYNALLOC):
|
||||
* dict_max specifies the maximum allowed dictionary size that xz_dec_run()
|
||||
* may allocate once it has parsed the dictionary size from the stream
|
||||
* headers. This way excessive allocations can be avoided while still
|
||||
* limiting the maximum memory usage to a sane value to prevent running the
|
||||
* system out of memory when decompressing streams from untrusted sources.
|
||||
*
|
||||
* On success, xz_dec_init() returns a pointer to struct xz_dec, which is
|
||||
* ready to be used with xz_dec_run(). If memory allocation fails,
|
||||
* xz_dec_init() returns NULL.
|
||||
*/
|
||||
XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max);
|
||||
|
||||
/**
|
||||
* xz_dec_run() - Run the XZ decoder
|
||||
* @s: Decoder state allocated using xz_dec_init()
|
||||
* @b: Input and output buffers
|
||||
*
|
||||
* The possible return values depend on build options and operation mode.
|
||||
* See enum xz_ret for details.
|
||||
*
|
||||
* Note that if an error occurs in single-call mode (return value is not
|
||||
* XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the
|
||||
* contents of the output buffer from b->out[b->out_pos] onward are
|
||||
* undefined. This is true even after XZ_BUF_ERROR, because with some filter
|
||||
* chains, there may be a second pass over the output buffer, and this pass
|
||||
* cannot be properly done if the output buffer is truncated. Thus, you
|
||||
* cannot give the single-call decoder a too small buffer and then expect to
|
||||
* get that amount valid data from the beginning of the stream. You must use
|
||||
* the multi-call decoder if you don't want to uncompress the whole stream.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);
|
||||
|
||||
/**
|
||||
* xz_dec_reset() - Reset an already allocated decoder state
|
||||
* @s: Decoder state allocated using xz_dec_init()
|
||||
*
|
||||
* This function can be used to reset the multi-call decoder state without
|
||||
* freeing and reallocating memory with xz_dec_end() and xz_dec_init().
|
||||
*
|
||||
* In single-call mode, xz_dec_reset() is always called in the beginning of
|
||||
* xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
|
||||
* multi-call mode.
|
||||
*/
|
||||
XZ_EXTERN void xz_dec_reset(struct xz_dec *s);
|
||||
|
||||
/**
|
||||
* xz_dec_end() - Free the memory allocated for the decoder state
|
||||
* @s: Decoder state allocated using xz_dec_init(). If s is NULL,
|
||||
* this function does nothing.
|
||||
*/
|
||||
XZ_EXTERN void xz_dec_end(struct xz_dec *s);
|
||||
|
||||
/*
|
||||
* Standalone build (userspace build or in-kernel build for boot time use)
|
||||
* needs a CRC32 implementation. For normal in-kernel use, kernel's own
|
||||
* CRC32 module is used instead, and users of this module don't need to
|
||||
* care about the functions below.
|
||||
*/
|
||||
#ifndef XZ_INTERNAL_CRC32
|
||||
# ifdef __KERNEL__
|
||||
# define XZ_INTERNAL_CRC32 0
|
||||
# else
|
||||
# define XZ_INTERNAL_CRC32 1
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* If CRC64 support has been enabled with XZ_USE_CRC64, a CRC64
|
||||
* implementation is needed too.
|
||||
*/
|
||||
#ifndef XZ_USE_CRC64
|
||||
# undef XZ_INTERNAL_CRC64
|
||||
# define XZ_INTERNAL_CRC64 0
|
||||
#endif
|
||||
#ifndef XZ_INTERNAL_CRC64
|
||||
# ifdef __KERNEL__
|
||||
# error Using CRC64 in the kernel has not been implemented.
|
||||
# else
|
||||
# define XZ_INTERNAL_CRC64 1
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if XZ_INTERNAL_CRC32
|
||||
/*
|
||||
* This must be called before any other xz_* function to initialize
|
||||
* the CRC32 lookup table.
|
||||
*/
|
||||
XZ_EXTERN void xz_crc32_init(void);
|
||||
|
||||
/*
|
||||
* Update CRC32 value using the polynomial from IEEE-802.3. To start a new
|
||||
* calculation, the third argument must be zero. To continue the calculation,
|
||||
* the previously returned value is passed as the third argument.
|
||||
*/
|
||||
XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc);
|
||||
#endif
|
||||
|
||||
#if XZ_INTERNAL_CRC64
|
||||
/*
|
||||
* This must be called before any other xz_* function (except xz_crc32_init())
|
||||
* to initialize the CRC64 lookup table.
|
||||
*/
|
||||
XZ_EXTERN void xz_crc64_init(void);
|
||||
|
||||
/*
|
||||
* Update CRC64 value using the polynomial from ECMA-182. To start a new
|
||||
* calculation, the third argument must be zero. To continue the calculation,
|
||||
* the previously returned value is passed as the third argument.
|
||||
*/
|
||||
XZ_EXTERN uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc);
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@ -0,0 +1,133 @@
|
||||
/*
|
||||
* Private includes and definitions for userspace use of XZ Embedded
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_CONFIG_H
|
||||
#define XZ_CONFIG_H
|
||||
|
||||
/* Uncomment to enable CRC64 support. */
|
||||
#define XZ_USE_CRC64
|
||||
|
||||
/* Uncomment as needed to enable BCJ filter decoders. */
|
||||
#if 0
|
||||
#define XZ_DEC_X86
|
||||
#define XZ_DEC_POWERPC
|
||||
#define XZ_DEC_IA64
|
||||
#define XZ_DEC_ARM
|
||||
#define XZ_DEC_ARMTHUMB
|
||||
#define XZ_DEC_SPARC
|
||||
#endif
|
||||
|
||||
/*
|
||||
* MSVC doesn't support modern C but XZ Embedded is mostly C89
|
||||
* so these are enough.
|
||||
*/
|
||||
#ifdef _MSC_VER
|
||||
typedef unsigned char bool;
|
||||
# define true 1
|
||||
# define false 0
|
||||
# define inline __inline
|
||||
#else
|
||||
# if !defined(__STDC_VERSION__) || __STDC_VERSION__ < 199901L
|
||||
# if defined(__GNUC__)
|
||||
# define inline __inline
|
||||
# else
|
||||
# define inline
|
||||
# endif
|
||||
# endif
|
||||
# include <stdbool.h>
|
||||
#endif
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "xz.h"
|
||||
|
||||
#define kmalloc(size, flags) malloc(size)
|
||||
#define kfree(ptr) free(ptr)
|
||||
#define vmalloc(size) malloc(size)
|
||||
#define vfree(ptr) free(ptr)
|
||||
|
||||
#define memeq(a, b, size) (memcmp(a, b, size) == 0)
|
||||
#define memzero(buf, size) memset(buf, 0, size)
|
||||
|
||||
#ifndef min
|
||||
# define min(x, y) ((x) < (y) ? (x) : (y))
|
||||
#endif
|
||||
#define min_t(type, x, y) min(x, y)
|
||||
|
||||
/*
|
||||
* Some functions have been marked with __always_inline to keep the
|
||||
* performance reasonable even when the compiler is optimizing for
|
||||
* small code size. You may be able to save a few bytes by #defining
|
||||
* __always_inline to plain inline, but don't complain if the code
|
||||
* becomes slow.
|
||||
*
|
||||
* NOTE: System headers on GNU/Linux may #define this macro already,
|
||||
* so if you want to change it, you need to #undef it first.
|
||||
*/
|
||||
#ifndef __always_inline
|
||||
# ifdef __GNUC__
|
||||
# define __always_inline \
|
||||
inline __attribute__((__always_inline__))
|
||||
# else
|
||||
# define __always_inline inline
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Inline functions to access unaligned unsigned 32-bit integers */
|
||||
#ifndef get_unaligned_le32
|
||||
static inline uint32_t get_unaligned_le32(const uint8_t *buf)
|
||||
{
|
||||
return (uint32_t)buf[0]
|
||||
| ((uint32_t)buf[1] << 8)
|
||||
| ((uint32_t)buf[2] << 16)
|
||||
| ((uint32_t)buf[3] << 24);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef get_unaligned_be32
|
||||
static inline uint32_t get_unaligned_be32(const uint8_t *buf)
|
||||
{
|
||||
return (uint32_t)(buf[0] << 24)
|
||||
| ((uint32_t)buf[1] << 16)
|
||||
| ((uint32_t)buf[2] << 8)
|
||||
| (uint32_t)buf[3];
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef put_unaligned_le32
|
||||
static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
|
||||
{
|
||||
buf[0] = (uint8_t)val;
|
||||
buf[1] = (uint8_t)(val >> 8);
|
||||
buf[2] = (uint8_t)(val >> 16);
|
||||
buf[3] = (uint8_t)(val >> 24);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef put_unaligned_be32
|
||||
static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
|
||||
{
|
||||
buf[0] = (uint8_t)(val >> 24);
|
||||
buf[1] = (uint8_t)(val >> 16);
|
||||
buf[2] = (uint8_t)(val >> 8);
|
||||
buf[3] = (uint8_t)val;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Use get_unaligned_le32() also for aligned access for simplicity. On
|
||||
* little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
|
||||
* could save a few bytes in code size.
|
||||
*/
|
||||
#ifndef get_le32
|
||||
# define get_le32 get_unaligned_le32
|
||||
#endif
|
||||
|
||||
#endif
|
@ -0,0 +1,59 @@
|
||||
/*
|
||||
* CRC32 using the polynomial from IEEE-802.3
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is not the fastest implementation, but it is pretty compact.
|
||||
* The fastest versions of xz_crc32() on modern CPUs without hardware
|
||||
* accelerated CRC instruction are 3-5 times as fast as this version,
|
||||
* but they are bigger and use more memory for the lookup table.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
/*
|
||||
* STATIC_RW_DATA is used in the pre-boot environment on some architectures.
|
||||
* See <linux/decompress/mm.h> for details.
|
||||
*/
|
||||
#ifndef STATIC_RW_DATA
|
||||
# define STATIC_RW_DATA static
|
||||
#endif
|
||||
|
||||
STATIC_RW_DATA uint32_t xz_crc32_table[256];
|
||||
|
||||
XZ_EXTERN void xz_crc32_init(void)
|
||||
{
|
||||
const uint32_t poly = 0xEDB88320;
|
||||
|
||||
uint32_t i;
|
||||
uint32_t j;
|
||||
uint32_t r;
|
||||
|
||||
for (i = 0; i < 256; ++i) {
|
||||
r = i;
|
||||
for (j = 0; j < 8; ++j)
|
||||
r = (r >> 1) ^ (poly & ~((r & 1) - 1));
|
||||
|
||||
xz_crc32_table[i] = r;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
|
||||
{
|
||||
crc = ~crc;
|
||||
|
||||
while (size != 0) {
|
||||
crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
|
||||
--size;
|
||||
}
|
||||
|
||||
return ~crc;
|
||||
}
|
@ -0,0 +1,50 @@
|
||||
/*
|
||||
* CRC64 using the polynomial from ECMA-182
|
||||
*
|
||||
* This file is similar to xz_crc32.c. See the comments there.
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
#ifndef STATIC_RW_DATA
|
||||
# define STATIC_RW_DATA static
|
||||
#endif
|
||||
|
||||
STATIC_RW_DATA uint64_t xz_crc64_table[256];
|
||||
|
||||
XZ_EXTERN void xz_crc64_init(void)
|
||||
{
|
||||
const uint64_t poly = 0xC96C5795D7870F42;
|
||||
|
||||
uint32_t i;
|
||||
uint32_t j;
|
||||
uint64_t r;
|
||||
|
||||
for (i = 0; i < 256; ++i) {
|
||||
r = i;
|
||||
for (j = 0; j < 8; ++j)
|
||||
r = (r >> 1) ^ (poly & ~((r & 1) - 1));
|
||||
|
||||
xz_crc64_table[i] = r;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
XZ_EXTERN uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc)
|
||||
{
|
||||
crc = ~crc;
|
||||
|
||||
while (size != 0) {
|
||||
crc = xz_crc64_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
|
||||
--size;
|
||||
}
|
||||
|
||||
return ~crc;
|
||||
}
|
@ -0,0 +1,574 @@
|
||||
/*
|
||||
* Branch/Call/Jump (BCJ) filter decoders
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
/*
|
||||
* The rest of the file is inside this ifdef. It makes things a little more
|
||||
* convenient when building without support for any BCJ filters.
|
||||
*/
|
||||
#ifdef XZ_DEC_BCJ
|
||||
|
||||
struct xz_dec_bcj {
|
||||
/* Type of the BCJ filter being used */
|
||||
enum {
|
||||
BCJ_X86 = 4, /* x86 or x86-64 */
|
||||
BCJ_POWERPC = 5, /* Big endian only */
|
||||
BCJ_IA64 = 6, /* Big or little endian */
|
||||
BCJ_ARM = 7, /* Little endian only */
|
||||
BCJ_ARMTHUMB = 8, /* Little endian only */
|
||||
BCJ_SPARC = 9 /* Big or little endian */
|
||||
} type;
|
||||
|
||||
/*
|
||||
* Return value of the next filter in the chain. We need to preserve
|
||||
* this information across calls, because we must not call the next
|
||||
* filter anymore once it has returned XZ_STREAM_END.
|
||||
*/
|
||||
enum xz_ret ret;
|
||||
|
||||
/* True if we are operating in single-call mode. */
|
||||
bool single_call;
|
||||
|
||||
/*
|
||||
* Absolute position relative to the beginning of the uncompressed
|
||||
* data (in a single .xz Block). We care only about the lowest 32
|
||||
* bits so this doesn't need to be uint64_t even with big files.
|
||||
*/
|
||||
uint32_t pos;
|
||||
|
||||
/* x86 filter state */
|
||||
uint32_t x86_prev_mask;
|
||||
|
||||
/* Temporary space to hold the variables from struct xz_buf */
|
||||
uint8_t *out;
|
||||
size_t out_pos;
|
||||
size_t out_size;
|
||||
|
||||
struct {
|
||||
/* Amount of already filtered data in the beginning of buf */
|
||||
size_t filtered;
|
||||
|
||||
/* Total amount of data currently stored in buf */
|
||||
size_t size;
|
||||
|
||||
/*
|
||||
* Buffer to hold a mix of filtered and unfiltered data. This
|
||||
* needs to be big enough to hold Alignment + 2 * Look-ahead:
|
||||
*
|
||||
* Type Alignment Look-ahead
|
||||
* x86 1 4
|
||||
* PowerPC 4 0
|
||||
* IA-64 16 0
|
||||
* ARM 4 0
|
||||
* ARM-Thumb 2 2
|
||||
* SPARC 4 0
|
||||
*/
|
||||
uint8_t buf[16];
|
||||
} temp;
|
||||
};
|
||||
|
||||
#ifdef XZ_DEC_X86
|
||||
/*
|
||||
* This is used to test the most significant byte of a memory address
|
||||
* in an x86 instruction.
|
||||
*/
|
||||
static inline int bcj_x86_test_msbyte(uint8_t b)
|
||||
{
|
||||
return b == 0x00 || b == 0xFF;
|
||||
}
|
||||
|
||||
static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
static const bool mask_to_allowed_status[8]
|
||||
= { true, true, true, false, true, false, false, false };
|
||||
|
||||
static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
|
||||
|
||||
size_t i;
|
||||
size_t prev_pos = (size_t)-1;
|
||||
uint32_t prev_mask = s->x86_prev_mask;
|
||||
uint32_t src;
|
||||
uint32_t dest;
|
||||
uint32_t j;
|
||||
uint8_t b;
|
||||
|
||||
if (size <= 4)
|
||||
return 0;
|
||||
|
||||
size -= 4;
|
||||
for (i = 0; i < size; ++i) {
|
||||
if ((buf[i] & 0xFE) != 0xE8)
|
||||
continue;
|
||||
|
||||
prev_pos = i - prev_pos;
|
||||
if (prev_pos > 3) {
|
||||
prev_mask = 0;
|
||||
} else {
|
||||
prev_mask = (prev_mask << (prev_pos - 1)) & 7;
|
||||
if (prev_mask != 0) {
|
||||
b = buf[i + 4 - mask_to_bit_num[prev_mask]];
|
||||
if (!mask_to_allowed_status[prev_mask]
|
||||
|| bcj_x86_test_msbyte(b)) {
|
||||
prev_pos = i;
|
||||
prev_mask = (prev_mask << 1) | 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
prev_pos = i;
|
||||
|
||||
if (bcj_x86_test_msbyte(buf[i + 4])) {
|
||||
src = get_unaligned_le32(buf + i + 1);
|
||||
while (true) {
|
||||
dest = src - (s->pos + (uint32_t)i + 5);
|
||||
if (prev_mask == 0)
|
||||
break;
|
||||
|
||||
j = mask_to_bit_num[prev_mask] * 8;
|
||||
b = (uint8_t)(dest >> (24 - j));
|
||||
if (!bcj_x86_test_msbyte(b))
|
||||
break;
|
||||
|
||||
src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
|
||||
}
|
||||
|
||||
dest &= 0x01FFFFFF;
|
||||
dest |= (uint32_t)0 - (dest & 0x01000000);
|
||||
put_unaligned_le32(dest, buf + i + 1);
|
||||
i += 4;
|
||||
} else {
|
||||
prev_mask = (prev_mask << 1) | 1;
|
||||
}
|
||||
}
|
||||
|
||||
prev_pos = i - prev_pos;
|
||||
s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t instr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
instr = get_unaligned_be32(buf + i);
|
||||
if ((instr & 0xFC000003) == 0x48000001) {
|
||||
instr &= 0x03FFFFFC;
|
||||
instr -= s->pos + (uint32_t)i;
|
||||
instr &= 0x03FFFFFC;
|
||||
instr |= 0x48000001;
|
||||
put_unaligned_be32(instr, buf + i);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_IA64
|
||||
static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
static const uint8_t branch_table[32] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
4, 4, 6, 6, 0, 0, 7, 7,
|
||||
4, 4, 0, 0, 4, 4, 0, 0
|
||||
};
|
||||
|
||||
/*
|
||||
* The local variables take a little bit stack space, but it's less
|
||||
* than what LZMA2 decoder takes, so it doesn't make sense to reduce
|
||||
* stack usage here without doing that for the LZMA2 decoder too.
|
||||
*/
|
||||
|
||||
/* Loop counters */
|
||||
size_t i;
|
||||
size_t j;
|
||||
|
||||
/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
|
||||
uint32_t slot;
|
||||
|
||||
/* Bitwise offset of the instruction indicated by slot */
|
||||
uint32_t bit_pos;
|
||||
|
||||
/* bit_pos split into byte and bit parts */
|
||||
uint32_t byte_pos;
|
||||
uint32_t bit_res;
|
||||
|
||||
/* Address part of an instruction */
|
||||
uint32_t addr;
|
||||
|
||||
/* Mask used to detect which instructions to convert */
|
||||
uint32_t mask;
|
||||
|
||||
/* 41-bit instruction stored somewhere in the lowest 48 bits */
|
||||
uint64_t instr;
|
||||
|
||||
/* Instruction normalized with bit_res for easier manipulation */
|
||||
uint64_t norm;
|
||||
|
||||
for (i = 0; i + 16 <= size; i += 16) {
|
||||
mask = branch_table[buf[i] & 0x1F];
|
||||
for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
|
||||
if (((mask >> slot) & 1) == 0)
|
||||
continue;
|
||||
|
||||
byte_pos = bit_pos >> 3;
|
||||
bit_res = bit_pos & 7;
|
||||
instr = 0;
|
||||
for (j = 0; j < 6; ++j)
|
||||
instr |= (uint64_t)(buf[i + j + byte_pos])
|
||||
<< (8 * j);
|
||||
|
||||
norm = instr >> bit_res;
|
||||
|
||||
if (((norm >> 37) & 0x0F) == 0x05
|
||||
&& ((norm >> 9) & 0x07) == 0) {
|
||||
addr = (norm >> 13) & 0x0FFFFF;
|
||||
addr |= ((uint32_t)(norm >> 36) & 1) << 20;
|
||||
addr <<= 4;
|
||||
addr -= s->pos + (uint32_t)i;
|
||||
addr >>= 4;
|
||||
|
||||
norm &= ~((uint64_t)0x8FFFFF << 13);
|
||||
norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
|
||||
norm |= (uint64_t)(addr & 0x100000)
|
||||
<< (36 - 20);
|
||||
|
||||
instr &= (1 << bit_res) - 1;
|
||||
instr |= norm << bit_res;
|
||||
|
||||
for (j = 0; j < 6; j++)
|
||||
buf[i + j + byte_pos]
|
||||
= (uint8_t)(instr >> (8 * j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_ARM
|
||||
static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t addr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
if (buf[i + 3] == 0xEB) {
|
||||
addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
|
||||
| ((uint32_t)buf[i + 2] << 16);
|
||||
addr <<= 2;
|
||||
addr -= s->pos + (uint32_t)i + 8;
|
||||
addr >>= 2;
|
||||
buf[i] = (uint8_t)addr;
|
||||
buf[i + 1] = (uint8_t)(addr >> 8);
|
||||
buf[i + 2] = (uint8_t)(addr >> 16);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t addr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 2) {
|
||||
if ((buf[i + 1] & 0xF8) == 0xF0
|
||||
&& (buf[i + 3] & 0xF8) == 0xF8) {
|
||||
addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
|
||||
| ((uint32_t)buf[i] << 11)
|
||||
| (((uint32_t)buf[i + 3] & 0x07) << 8)
|
||||
| (uint32_t)buf[i + 2];
|
||||
addr <<= 1;
|
||||
addr -= s->pos + (uint32_t)i + 4;
|
||||
addr >>= 1;
|
||||
buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
|
||||
buf[i] = (uint8_t)(addr >> 11);
|
||||
buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
|
||||
buf[i + 2] = (uint8_t)addr;
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_SPARC
|
||||
static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t instr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
instr = get_unaligned_be32(buf + i);
|
||||
if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
|
||||
instr <<= 2;
|
||||
instr -= s->pos + (uint32_t)i;
|
||||
instr >>= 2;
|
||||
instr = ((uint32_t)0x40000000 - (instr & 0x400000))
|
||||
| 0x40000000 | (instr & 0x3FFFFF);
|
||||
put_unaligned_be32(instr, buf + i);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Apply the selected BCJ filter. Update *pos and s->pos to match the amount
|
||||
* of data that got filtered.
|
||||
*
|
||||
* NOTE: This is implemented as a switch statement to avoid using function
|
||||
* pointers, which could be problematic in the kernel boot code, which must
|
||||
* avoid pointers to static data (at least on x86).
|
||||
*/
|
||||
static void bcj_apply(struct xz_dec_bcj *s,
|
||||
uint8_t *buf, size_t *pos, size_t size)
|
||||
{
|
||||
size_t filtered;
|
||||
|
||||
buf += *pos;
|
||||
size -= *pos;
|
||||
|
||||
switch (s->type) {
|
||||
#ifdef XZ_DEC_X86
|
||||
case BCJ_X86:
|
||||
filtered = bcj_x86(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
case BCJ_POWERPC:
|
||||
filtered = bcj_powerpc(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_IA64
|
||||
case BCJ_IA64:
|
||||
filtered = bcj_ia64(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARM
|
||||
case BCJ_ARM:
|
||||
filtered = bcj_arm(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
case BCJ_ARMTHUMB:
|
||||
filtered = bcj_armthumb(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_SPARC
|
||||
case BCJ_SPARC:
|
||||
filtered = bcj_sparc(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
/* Never reached but silence compiler warnings. */
|
||||
filtered = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
*pos += filtered;
|
||||
s->pos += filtered;
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush pending filtered data from temp to the output buffer.
|
||||
* Move the remaining mixture of possibly filtered and unfiltered
|
||||
* data to the beginning of temp.
|
||||
*/
|
||||
static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
|
||||
{
|
||||
size_t copy_size;
|
||||
|
||||
copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
|
||||
memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
|
||||
b->out_pos += copy_size;
|
||||
|
||||
s->temp.filtered -= copy_size;
|
||||
s->temp.size -= copy_size;
|
||||
memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
|
||||
}
|
||||
|
||||
/*
|
||||
* The BCJ filter functions are primitive in sense that they process the
|
||||
* data in chunks of 1-16 bytes. To hide this issue, this function does
|
||||
* some buffering.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
|
||||
struct xz_dec_lzma2 *lzma2,
|
||||
struct xz_buf *b)
|
||||
{
|
||||
size_t out_start;
|
||||
|
||||
/*
|
||||
* Flush pending already filtered data to the output buffer. Return
|
||||
* immediatelly if we couldn't flush everything, or if the next
|
||||
* filter in the chain had already returned XZ_STREAM_END.
|
||||
*/
|
||||
if (s->temp.filtered > 0) {
|
||||
bcj_flush(s, b);
|
||||
if (s->temp.filtered > 0)
|
||||
return XZ_OK;
|
||||
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we have more output space than what is currently pending in
|
||||
* temp, copy the unfiltered data from temp to the output buffer
|
||||
* and try to fill the output buffer by decoding more data from the
|
||||
* next filter in the chain. Apply the BCJ filter on the new data
|
||||
* in the output buffer. If everything cannot be filtered, copy it
|
||||
* to temp and rewind the output buffer position accordingly.
|
||||
*
|
||||
* This needs to be always run when temp.size == 0 to handle a special
|
||||
* case where the output buffer is full and the next filter has no
|
||||
* more output coming but hasn't returned XZ_STREAM_END yet.
|
||||
*/
|
||||
if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
|
||||
out_start = b->out_pos;
|
||||
memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
|
||||
b->out_pos += s->temp.size;
|
||||
|
||||
s->ret = xz_dec_lzma2_run(lzma2, b);
|
||||
if (s->ret != XZ_STREAM_END
|
||||
&& (s->ret != XZ_OK || s->single_call))
|
||||
return s->ret;
|
||||
|
||||
bcj_apply(s, b->out, &out_start, b->out_pos);
|
||||
|
||||
/*
|
||||
* As an exception, if the next filter returned XZ_STREAM_END,
|
||||
* we can do that too, since the last few bytes that remain
|
||||
* unfiltered are meant to remain unfiltered.
|
||||
*/
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
return XZ_STREAM_END;
|
||||
|
||||
s->temp.size = b->out_pos - out_start;
|
||||
b->out_pos -= s->temp.size;
|
||||
memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
|
||||
|
||||
/*
|
||||
* If there wasn't enough input to the next filter to fill
|
||||
* the output buffer with unfiltered data, there's no point
|
||||
* to try decoding more data to temp.
|
||||
*/
|
||||
if (b->out_pos + s->temp.size < b->out_size)
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have unfiltered data in temp. If the output buffer isn't full
|
||||
* yet, try to fill the temp buffer by decoding more data from the
|
||||
* next filter. Apply the BCJ filter on temp. Then we hopefully can
|
||||
* fill the actual output buffer by copying filtered data from temp.
|
||||
* A mix of filtered and unfiltered data may be left in temp; it will
|
||||
* be taken care on the next call to this function.
|
||||
*/
|
||||
if (b->out_pos < b->out_size) {
|
||||
/* Make b->out{,_pos,_size} temporarily point to s->temp. */
|
||||
s->out = b->out;
|
||||
s->out_pos = b->out_pos;
|
||||
s->out_size = b->out_size;
|
||||
b->out = s->temp.buf;
|
||||
b->out_pos = s->temp.size;
|
||||
b->out_size = sizeof(s->temp.buf);
|
||||
|
||||
s->ret = xz_dec_lzma2_run(lzma2, b);
|
||||
|
||||
s->temp.size = b->out_pos;
|
||||
b->out = s->out;
|
||||
b->out_pos = s->out_pos;
|
||||
b->out_size = s->out_size;
|
||||
|
||||
if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
|
||||
return s->ret;
|
||||
|
||||
bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
|
||||
|
||||
/*
|
||||
* If the next filter returned XZ_STREAM_END, we mark that
|
||||
* everything is filtered, since the last unfiltered bytes
|
||||
* of the stream are meant to be left as is.
|
||||
*/
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
s->temp.filtered = s->temp.size;
|
||||
|
||||
bcj_flush(s, b);
|
||||
if (s->temp.filtered > 0)
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
return s->ret;
|
||||
}
|
||||
|
||||
XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call)
|
||||
{
|
||||
struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
||||
if (s != NULL)
|
||||
s->single_call = single_call;
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
|
||||
{
|
||||
switch (id) {
|
||||
#ifdef XZ_DEC_X86
|
||||
case BCJ_X86:
|
||||
#endif
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
case BCJ_POWERPC:
|
||||
#endif
|
||||
#ifdef XZ_DEC_IA64
|
||||
case BCJ_IA64:
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARM
|
||||
case BCJ_ARM:
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
case BCJ_ARMTHUMB:
|
||||
#endif
|
||||
#ifdef XZ_DEC_SPARC
|
||||
case BCJ_SPARC:
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Unsupported Filter ID */
|
||||
return XZ_OPTIONS_ERROR;
|
||||
}
|
||||
|
||||
s->type = id;
|
||||
s->ret = XZ_OK;
|
||||
s->pos = 0;
|
||||
s->x86_prev_mask = 0;
|
||||
s->temp.filtered = 0;
|
||||
s->temp.size = 0;
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,863 @@
|
||||
/*
|
||||
* .xz Stream decoder
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
#include "xz_stream.h"
|
||||
|
||||
#ifdef XZ_USE_CRC64
|
||||
# define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64)
|
||||
#else
|
||||
# define IS_CRC64(check_type) false
|
||||
#endif
|
||||
|
||||
/* Hash used to validate the Index field */
|
||||
struct xz_dec_hash {
|
||||
vli_type unpadded;
|
||||
vli_type uncompressed;
|
||||
uint32_t crc32;
|
||||
};
|
||||
|
||||
struct xz_dec {
|
||||
/* Position in dec_main() */
|
||||
enum {
|
||||
SEQ_STREAM_HEADER,
|
||||
SEQ_BLOCK_START,
|
||||
SEQ_BLOCK_HEADER,
|
||||
SEQ_BLOCK_UNCOMPRESS,
|
||||
SEQ_BLOCK_PADDING,
|
||||
SEQ_BLOCK_CHECK,
|
||||
SEQ_INDEX,
|
||||
SEQ_INDEX_PADDING,
|
||||
SEQ_INDEX_CRC32,
|
||||
SEQ_STREAM_FOOTER
|
||||
} sequence;
|
||||
|
||||
/* Position in variable-length integers and Check fields */
|
||||
uint32_t pos;
|
||||
|
||||
/* Variable-length integer decoded by dec_vli() */
|
||||
vli_type vli;
|
||||
|
||||
/* Saved in_pos and out_pos */
|
||||
size_t in_start;
|
||||
size_t out_start;
|
||||
|
||||
#ifdef XZ_USE_CRC64
|
||||
/* CRC32 or CRC64 value in Block or CRC32 value in Index */
|
||||
uint64_t crc;
|
||||
#else
|
||||
/* CRC32 value in Block or Index */
|
||||
uint32_t crc;
|
||||
#endif
|
||||
|
||||
/* Type of the integrity check calculated from uncompressed data */
|
||||
enum xz_check check_type;
|
||||
|
||||
/* Operation mode */
|
||||
enum xz_mode mode;
|
||||
|
||||
/*
|
||||
* True if the next call to xz_dec_run() is allowed to return
|
||||
* XZ_BUF_ERROR.
|
||||
*/
|
||||
bool allow_buf_error;
|
||||
|
||||
/* Information stored in Block Header */
|
||||
struct {
|
||||
/*
|
||||
* Value stored in the Compressed Size field, or
|
||||
* VLI_UNKNOWN if Compressed Size is not present.
|
||||
*/
|
||||
vli_type compressed;
|
||||
|
||||
/*
|
||||
* Value stored in the Uncompressed Size field, or
|
||||
* VLI_UNKNOWN if Uncompressed Size is not present.
|
||||
*/
|
||||
vli_type uncompressed;
|
||||
|
||||
/* Size of the Block Header field */
|
||||
uint32_t size;
|
||||
} block_header;
|
||||
|
||||
/* Information collected when decoding Blocks */
|
||||
struct {
|
||||
/* Observed compressed size of the current Block */
|
||||
vli_type compressed;
|
||||
|
||||
/* Observed uncompressed size of the current Block */
|
||||
vli_type uncompressed;
|
||||
|
||||
/* Number of Blocks decoded so far */
|
||||
vli_type count;
|
||||
|
||||
/*
|
||||
* Hash calculated from the Block sizes. This is used to
|
||||
* validate the Index field.
|
||||
*/
|
||||
struct xz_dec_hash hash;
|
||||
} block;
|
||||
|
||||
/* Variables needed when verifying the Index field */
|
||||
struct {
|
||||
/* Position in dec_index() */
|
||||
enum {
|
||||
SEQ_INDEX_COUNT,
|
||||
SEQ_INDEX_UNPADDED,
|
||||
SEQ_INDEX_UNCOMPRESSED
|
||||
} sequence;
|
||||
|
||||
/* Size of the Index in bytes */
|
||||
vli_type size;
|
||||
|
||||
/* Number of Records (matches block.count in valid files) */
|
||||
vli_type count;
|
||||
|
||||
/*
|
||||
* Hash calculated from the Records (matches block.hash in
|
||||
* valid files).
|
||||
*/
|
||||
struct xz_dec_hash hash;
|
||||
} index;
|
||||
|
||||
/*
|
||||
* Temporary buffer needed to hold Stream Header, Block Header,
|
||||
* and Stream Footer. The Block Header is the biggest (1 KiB)
|
||||
* so we reserve space according to that. buf[] has to be aligned
|
||||
* to a multiple of four bytes; the size_t variables before it
|
||||
* should guarantee this.
|
||||
*/
|
||||
struct {
|
||||
size_t pos;
|
||||
size_t size;
|
||||
uint8_t buf[1024];
|
||||
} temp;
|
||||
|
||||
struct xz_dec_lzma2 *lzma2;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
struct xz_dec_bcj *bcj;
|
||||
bool bcj_active;
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
/* Sizes of the Check field with different Check IDs */
|
||||
static const uint8_t check_sizes[16] = {
|
||||
0,
|
||||
4, 4, 4,
|
||||
8, 8, 8,
|
||||
16, 16, 16,
|
||||
32, 32, 32,
|
||||
64, 64, 64
|
||||
};
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
|
||||
* must have set s->temp.pos to indicate how much data we are supposed
|
||||
* to copy into s->temp.buf. Return true once s->temp.pos has reached
|
||||
* s->temp.size.
|
||||
*/
|
||||
static bool fill_temp(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
size_t copy_size = min_t(size_t,
|
||||
b->in_size - b->in_pos, s->temp.size - s->temp.pos);
|
||||
|
||||
memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
|
||||
b->in_pos += copy_size;
|
||||
s->temp.pos += copy_size;
|
||||
|
||||
if (s->temp.pos == s->temp.size) {
|
||||
s->temp.pos = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Decode a variable-length integer (little-endian base-128 encoding) */
|
||||
static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
|
||||
size_t *in_pos, size_t in_size)
|
||||
{
|
||||
uint8_t byte;
|
||||
|
||||
if (s->pos == 0)
|
||||
s->vli = 0;
|
||||
|
||||
while (*in_pos < in_size) {
|
||||
byte = in[*in_pos];
|
||||
++*in_pos;
|
||||
|
||||
s->vli |= (vli_type)(byte & 0x7F) << s->pos;
|
||||
|
||||
if ((byte & 0x80) == 0) {
|
||||
/* Don't allow non-minimal encodings. */
|
||||
if (byte == 0 && s->pos != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->pos = 0;
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
s->pos += 7;
|
||||
if (s->pos == 7 * VLI |