#include "NeoPatterns.h" NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(), void (*callbackDebug)(String)) : Adafruit_NeoPixel(pixels, pin, type) { OnComplete = callback; OnDebugOutput = callbackDebug; //Allocate a zero initialized block of memory big enough to hold "pixels" uint8_t. pixelR = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelG = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelB = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelR_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelG_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); pixelB_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) ); // Max. MAX_DROPS Drops: Location drop = ( uint8_t* ) calloc (MAX_DROPS, sizeof( uint8_t ) ); // Max. MAX_DROPS Drops: Brightness (Default to 0) dropBrightness = ( uint8_t* ) calloc (MAX_DROPS, sizeof( uint8_t ) ); // Max. MAX_RINGS Rings: Location ring = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) ); // Max. MAX_RINGS Rings: Brightness (Default to 0) ringBrightness = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) ); ringDistance = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) ); } void NeoPatterns::Update() { if ((millis() - lastUpdate) > Interval) // time to update { // OnDebugOutput(String("Updating at " ) + String(millis())); lastUpdate = millis(); switch (ActivePattern) { case RAINBOW_CYCLE: RainbowCycleUpdate(); break; case THEATER_CHASE: TheaterChaseUpdate(); break; case BVB: BVBChaseUpdate(); break; case COLOR_WIPE: ColorWipeUpdate(); break; case SCANNER: ScannerUpdate(); break; case FADE: FadeUpdate(); break; case RANDOM_FADE: RandomFadeUpdate(); break; case RANDOM_FADE_SINGLE: RandomFadeSingleUpdate(); break; case SMOOTH: SmoothUpdate(); break; case ICON: IconUpdate(); break; case PLASMA: PlasmaUpdate(); break; case FILL: break; case RANDOM: break; case FIRE: FireUpdate(); break; case FIREWORKS: FireworksUpdate(); break; case DROP: DropUpdate(); break; case RINGS: RingsUpdate(); break; case SCANNER_RANDOM: ScannerRandomUpdate(); break; case NONE: break; default: break; } } else { delay(1); // Serial.print("."); } } void NeoPatterns::Increment() { // OnDebugOutput(String(Index) + " / " + String(TotalSteps)); if (Direction == FORWARD) { Index++; if (Index >= TotalSteps) { Index = 0; if (OnComplete != NULL) { OnComplete(); // call the completion callback } } } else // Direction == REVERSE { --Index; if (Index <= 0) { Index = TotalSteps - 1; if (OnComplete != NULL) { OnComplete(); // call the completion callback } } } } void NeoPatterns::Reverse() { if (Direction == FORWARD) { Direction = REVERSE; // Index = TotalSteps - 1; } else { Direction = FORWARD; // Index = numPixels()-TotalSteps; } } void NeoPatterns::None(uint8_t interval) { Interval = interval; if (ActivePattern != NONE) { clear(); show(); } ActivePattern = NONE; } /****************** Effects ******************/ void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) { ActivePattern = RAINBOW_CYCLE; Interval = interval; TotalSteps = 255; Index = 0; Direction = dir; } void NeoPatterns::RainbowCycleUpdate() { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255)); } show(); Increment(); } void NeoPatterns::TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) { ActivePattern = THEATER_CHASE; Interval = interval; TotalSteps = numPixels(); Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } void NeoPatterns::TheaterChaseUpdate() { for (int i = 0; i < numPixels(); i++) { if ((i + Index) % 8 == 0) { setPixelColor(i, Color1); } else { // Reduce brightness for the base pixels float _brightness = 0.2; uint8_t _r = (uint8_t)(Color2 >> 16); uint8_t _g = (uint8_t)(Color2 >> 8); uint8_t _b = (uint8_t)Color2; setPixelColor(i, Color(_r * _brightness, _g * _brightness, _b * _brightness)); } } show(); Increment(); } void NeoPatterns::BVBChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) { ActivePattern = BVB; Interval = interval; TotalSteps = numPixels(); Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } void NeoPatterns::BVBChaseUpdate() { for (int i = 0; i < numPixels(); i++) { if ((i + Index) % 8 == 0) { setPixelColor(i, Color1); } else { // Reduce brightness for the base pixels float _brightness = 0.2; uint8_t _r = (uint8_t)(Color2 >> 16); uint8_t _g = (uint8_t)(Color2 >> 8); uint8_t _b = (uint8_t)Color2; setPixelColor(i, Color(_r * _brightness, _g * _brightness, _b * _brightness)); } } show(); Increment(); } void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir) { ActivePattern = COLOR_WIPE; Interval = interval; TotalSteps = numPixels(); Color1 = color; Index = 0; Direction = dir; } // Update the Color Wipe Pattern void NeoPatterns::ColorWipeUpdate() { setPixelColor(Index, Color1); show(); Increment(); } // Initialize for a SCANNNER void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful, bool spiral) { ActivePattern = SCANNER; Interval = interval; TotalSteps = (numPixels() - 1) * 2; Color1 = color1; Index = 0; wPos = 0; this->colorful = colorful; this->spiral = spiral; } // Update the Scanner Pattern void NeoPatterns::ScannerUpdate() { if (colorful) { Color1 = Wheel(wPos); if (wPos >= 255) { wPos = 0; } else { wPos++; } } for (int i = 0; i < numPixels(); i++) { int finalpos; if (spiral) { finalpos = numToSpiralPos(i); } else { finalpos = i; } if (i == Index) // Scan Pixel to the right { setPixelColor(finalpos, Color1); } else if (i == TotalSteps - Index) // Scan Pixel to the left { setPixelColor(finalpos, Color1); } else // Fading tail { setPixelColor(finalpos, DimColor(getPixelColor(finalpos))); } } show(); Increment(); } // Initialize for a SCANNNER_RANDOM void NeoPatterns::ScannerRandom(uint32_t color1, uint8_t interval, bool colorful, bool spiral) { ActivePattern = SCANNER_RANDOM; Interval = interval; TotalSteps = (numPixels() - 1) * 2; Color1 = color1; Index = numPixels() / 2; wPos = 0; this->colorful = colorful; this->spiral = spiral; } // Update the Scanner Pattern void NeoPatterns::ScannerRandomUpdate() { if (colorful) { Color1 = Wheel(wPos); if (wPos >= 255) { wPos = 0; } else { wPos++; } } if (random(0, 1000) < 5) { Reverse(); } for (int i = 0; i < numPixels(); i++) { int finalpos; if (spiral) { finalpos = numToSpiralPos(i); } else { finalpos = i; } if (i == Index) // Scan Pixel to the right { setPixelColor(finalpos, Color1); } else if (i == TotalSteps - Index) // Scan Pixel to the left { setPixelColor(finalpos, Color1); } else // Fading tail { setPixelColor(finalpos, DimColor(getPixelColor(finalpos))); } } show(); Increment(); } void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir) { ActivePattern = FADE; Interval = interval; TotalSteps = steps; Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } // Update the Fade Pattern void NeoPatterns::FadeUpdate() { // Calculate linear interpolation between Color1 and Color2 // Optimise order of operations to minimize truncation error uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps; uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps; uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps; ColorSet(Color(red, green, blue)); show(); Increment(); } void NeoPatterns::RandomFade(uint8_t interval ) { ActivePattern = RANDOM_FADE; Interval = interval; TotalSteps = 255; Index = 0; } void NeoPatterns::RandomFadeUpdate() { ColorSet(Wheel(Index)); Increment(); } void NeoPatterns::RandomFadeSingle(uint8_t interval, uint8_t speed) { ActivePattern = RANDOM_FADE_SINGLE; Interval = interval; TotalSteps = 255; Index = 0; WheelSpeed = speed; RandomBuffer(); } void NeoPatterns::RandomFadeSingleUpdate() { for (int i = 0; i < numPixels(); i++) { pixelR_buffer[i] += random(0, random(0, WheelSpeed + 1) + 1); //use buffer red channel for color wheel setPixelColor(i, Wheel(pixelR_buffer[i])); } show(); Increment(); } void NeoPatterns::RandomBuffer() { for (int i = 0; i < numPixels(); i++) { uint32_t c = Wheel(random(0, 256)); pixelR_buffer[i] = (uint8_t)(c >> 16); pixelG_buffer[i] = (uint8_t)(c >> 8); pixelB_buffer[i] = (uint8_t)c; } } void NeoPatterns::Random() { None(); // Stop all other effects ActivePattern = RANDOM; for (int i = 0; i < numPixels(); i++) { setPixelColor(i, Wheel(random(0, 256))); } show(); } /********** FIRE ********/ void NeoPatterns::Fire(uint8_t interval) { ActivePattern = FIRE; Interval = interval; TotalSteps = 255; Index = 0; } void NeoPatterns::FireUpdate() { int r = 255; int g = r - 140; int b = 0; for (int i = 0; i < numPixels(); i++) { int flicker = random(0, 70); int r1 = r - flicker; int g1 = g - flicker; int b1 = b - flicker; if (g1 < 0) g1 = 0; if (r1 < 0) r1 = 0; if (b1 < 0) b1 = 0; setPixelColor(i, r1, g1, b1); } show(); Interval = random(50, 150); } /********** FIRE END ****/ /********** FIREWORKS ********/ // Manchmal noch instabil und lässt den ESP abstürzen. Müsste mal mit Serial mal gedebuggt werden... void NeoPatterns::Fireworks() { ActivePattern = FIREWORKS; Interval = 20; // 12ms ist so ziemlich die untere Grenze, durch die Berechnugen und Speicherzugriffe. // Calculate "good" explosion speed // 60 LED Strip: 50, 100, 0.985 is a good choice (with Interval = 25) // Start 0, with maximum speed (100), the rocket should explode at the LATEST at position 50 (of 60). (Which is 10 pixels before maximum) // rocket_speed_max should not be >100, as this would skip LEDs. explosion_speed = 0.25f; rocket_speed_max = 100; rocket_slowdown = pow(explosion_speed, (float)((float)1/(float)(2*numPixels()-10))); // 0.985f; rocket_speed_min = int(log(explosion_speed)/((numPixels()/4) * log(rocket_slowdown)))+1; if (rocket_speed_min/100 < explosion_speed) { rocket_speed_min += explosion_speed*100; } // OnDebugOutput(String(rocket_slowdown, 6)); // OnDebugOutput(String(rocket_speed_min)); } /** Debug Output haus/RGB5m/strip/DEBUG Start: 0: Speed: 0.960 Pos: 0 haus/RGB5m/strip/DEBUG Explode 0: Speed 0.249 Pos: 149 Iterations: 282 // Die Anzahl der Iterationen ist gut berechnet (0.96 -- 282 von 290 max). Nur wurde der Slowdown nicht mit einberechnet */ void NeoPatterns::explosion(int pos, float rocketspeed) { uint8_t hue = random(0, 256); uint8_t explosionsize = random(EXPLOSION_SIZE_MIN, EXPLOSION_SIZE_MAX + 1); for (int i = 0; i < explosionsize; i++) { particle_arr.push_back(Particle(this, pos + i - 3, (float)(((float)random(-50, 50)) / 100) + rocketspeed / 2, hue, 1, 0.99f)); } } void NeoPatterns::FireworksUpdate() { if (millis() > currentRocketMillis + rocketTimeout) { // Start a new rocket if (random(0, 2) == 0) { Rocket tmpr = Rocket(this, 0, (float)(((float)random(rocket_speed_min, rocket_speed_max)) / 100), rocket_slowdown); // OnDebugOutput(String("Start: ") + String(tmpr.id()) + String(": Speed: ") + String(tmpr.rocketspeed(), 3) + String(" Pos: 0")); rocket_arr.push_back(tmpr); } else { Rocket tmpr = Rocket(this, numPixels(), -(float)(((float)random(rocket_speed_min, rocket_speed_max)) / 100), rocket_slowdown); // OnDebugOutput(String("Start: ") + String(tmpr.id()) + String(": Speed: ") + String(tmpr.rocketspeed(), 3) + String(" Pos: ") + String(numPixels())); rocket_arr.push_back(tmpr); } rocketTimeout = random(ROCKET_LAUNCH_TIMEOUT_MIN, ROCKET_LAUNCH_TIMEOUT_MAX+1); currentRocketMillis = millis(); } clear(); // Iterate through all particles for (std::vector::iterator it = particle_arr.begin(); it != particle_arr.end(); ++it) { Particle & p = *it; p.update(); // Erase Particles which are too dark if (p.brightness() < 0.1) { it = particle_arr.erase(it); // After erasing, it is now pointing the next element. --it; } } // Iterate through all rockets for (std::vector::iterator it = rocket_arr.begin(); it != rocket_arr.end(); ++it) { Rocket & r = *it; // Create Trail on old position particle_arr.push_back(Particle(this, r.pos(), 0, 20, 0.3)); r.update(); if ((r.rocketspeed() <= explosion_speed) && (r.rocketspeed() >= -explosion_speed)) { // OnDebugOutput(String("Explode ") + String(r.id()) + String(": Speed ") + String(r.rocketspeed(), 3) + String(" Pos: ") + String(r.pos()) + String(" Iterations: ") + String(r.iteration())); explosion( r.pos(), r.rocketspeed()); it = rocket_arr.erase(it); // After erasing, it is now pointing the next element. --it; } } show(); } /********** FIREWORKS END ****/ /********** DROP ********/ void NeoPatterns::Drop(uint8_t interval) { ActivePattern = DROP; Interval = interval; TotalSteps = 255; Index = 0; for (int i = 0; i < 10; i++) { drop[i] = 0; dropBrightness[i] = 0; } clear(); } void NeoPatterns::DropUpdate() { // Generate new drop? if (random(0, 100) > 50) { Serial.println("Will generate a new drop"); // New drop // Find first free drop and discard, if no free place for (int i = 0; i < MAX_DROPS; i++) { if (drop[i] == 0) { Serial.print("Found a free position for a drop: "); // Random position drop[i] = random(0, numPixels()); dropBrightness[i] = 255; // Initial brightness Serial.print(i); Serial.print(" pos "); Serial.println(drop[i]); break; } } } // Work for all other drops for (int i = 0; i < MAX_DROPS; i++) { if (drop[i] > 0) { Serial.print("Updating drop on "); Serial.println(i); // Current drop // dropBrightness[i] = dropBrightness[i]>>1; dropBrightness[i] *= 0.9; if (dropBrightness[i] <= 8) { // Brightness to zero for all neighbours dropBrightness[i] = 0; } setPixelColor(drop[i], 0, 0, dropBrightness[i]); // TODO: Other colors? // Set neighbouring drops int nBright; for (int neighbour = 1; neighbour < 5; neighbour++) { //nBright = dropBrightness[i] >> neighbour; nBright = dropBrightness[i]; for (int j = 1; j < neighbour; j++) { nBright *= 0.6; } Serial.print(neighbour); Serial.print(": "); Serial.println(nBright); if ((drop[i] - neighbour) >= 0) { setPixelColor(drop[i] - neighbour, 0, 0, nBright); } if ((drop[i] + neighbour) <= numPixels()) { setPixelColor(drop[i] + neighbour, 0, 0, nBright); } } if (dropBrightness[i] <= 8) { // Disable this drop drop[i] = 0; } } } show(); } /********** DROP END ****/ /********** RINGS ********/ void NeoPatterns::Rings(uint8_t interval) { ActivePattern = RINGS; Interval = interval; TotalSteps = 255; Index = 0; for (int i = 0; i < 10; i++) { ring[i] = 0; ringBrightness[i] = 0; ringDistance[i] = 0; } clear(); } void NeoPatterns::RingsUpdate() { // Generate new ring? if (random(0, 100) > 50) { Serial.println("Will generate a new ring"); // New ring // Find first free ring and discard, if no free place for (int i = 0; i < MAX_RINGS; i++) { if (ring[i] == 0) { Serial.print("Found a free position for a ring: "); // Random position ring[i] = random(0, numPixels()); ringBrightness[i] = 255 << 1; // Initial brightness ringDistance[i] = 0; Serial.print(i); Serial.print(" pos "); Serial.println(ring[i]); break; } } } // Work for all other rings for (int i = 0; i < MAX_RINGS; i++) { if (ring[i] > 0) { Serial.print("Updating ring on "); Serial.println(i); // Center of the ring ringBrightness[i] *= 0.9; if (ringBrightness[i] <= 8) { // Brightness to zero for the middle ringBrightness[i] = 0; } setPixelColor(ring[i], 0, 0, ringBrightness[i]); // TODO: Other colors? // Set neighbouring rings int nBright; // Maximum distance for rings is 10 // General idea: Start with the middle (max brightness), continue left and right with brightness * 0.9 // For each step, dim current brightness for ALL pixels simply by 0.7, below thershold -> off ringDistance[i]++; // Neighbours: Color of middle, dimmed by 0.9 to max distance for (int neighbour = 1; neighbour < ringDistance[i]; neighbour++) { Serial.print("Neighbour "); Serial.print(neighbour); nBright = 255; if (ringBrightness[i] == 0) { nBright = 0; } else { for (int j = 0; j < ringDistance[i] - neighbour; j++) { nBright *= 0.8; } nBright *= (1 - 0.1 * ringDistance[i]); } if (nBright < 10) { nBright = 0; } Serial.print(" brightness: "); Serial.println(nBright); if ((ring[i] - neighbour) >= 0) { setPixelColor(ring[i] - neighbour, 0, 0, nBright); } if ((ring[i] + neighbour) <= numPixels()) { setPixelColor(ring[i] + neighbour, 0, 0, nBright); } } if (ringBrightness[i] <= 8) { // Disable this ring ring[i] = 0; } } } show(); } /********** RINGS END ****/ void NeoPatterns::Smooth(uint8_t wheelSpeed, uint8_t smoothing, uint8_t strength, uint8_t interval) { ActivePattern = SMOOTH; Interval = interval; Index = 0; WheelSpeed = wheelSpeed; Smoothing = smoothing; Strength = strength; movingPoint_x = 3; movingPoint_y = 3; // Clear buffer (from previous or different effects) for (int i = 0; i < numPixels(); i++) { pixelR_buffer[i] = 0; pixelG_buffer[i] = 0; pixelB_buffer[i] = 0; } } void NeoPatterns::SmoothUpdate() { uint32_t c = Wheel(wPos); wPosSlow += WheelSpeed; wPos = (wPos + (wPosSlow / 10) ) % 255; wPosSlow = wPosSlow % 16; uint8_t r = (uint8_t)(c >> 16); uint8_t g = (uint8_t)(c >> 8); uint8_t b = (uint8_t)c; movingPoint_x = movingPoint_x + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1); movingPoint_y = movingPoint_y + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1); if (movingPoint_x < 8) { movingPoint_x = 8 - movingPoint_x; } else if (movingPoint_x >= 16) { movingPoint_x = 22 - movingPoint_x; } else { movingPoint_x -= 8; } if (movingPoint_y < 8) { movingPoint_y = 8 - movingPoint_y; } else if (movingPoint_y >= 16) { movingPoint_y = 22 - movingPoint_y; } else { movingPoint_y -= 8; } uint8_t startx = movingPoint_x; uint8_t starty = movingPoint_y; for (int i = 0; i < Strength; i++) { movingPoint_x = startx + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1); movingPoint_y = starty + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1); if (movingPoint_x < 8) { movingPoint_x = 8 - movingPoint_x; } else if (movingPoint_x >= 16) { movingPoint_x = 22 - movingPoint_x; } else { movingPoint_x -= 8; } if (movingPoint_y < 8) { movingPoint_y = 8 - movingPoint_y; } else if (movingPoint_y >= 16) { movingPoint_y = 22 - movingPoint_y; } else { movingPoint_y -= 8; } if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] < r) { pixelR[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] > r) { pixelR[xyToPos(movingPoint_x, movingPoint_y)]--; } if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] < g) { pixelG[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] > g) { pixelG[xyToPos(movingPoint_x, movingPoint_y)]--; } if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] < b) { pixelB[xyToPos(movingPoint_x, movingPoint_y)]++; } else if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] > b) { pixelB[xyToPos(movingPoint_x, movingPoint_y)]--; } } movingPoint_x = startx; movingPoint_y = starty; for (int i = 0; i < numPixels(); i++) { pixelR_buffer[i] = (Smoothing / 100.0) * pixelR[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelR, i, 0, 0); pixelG_buffer[i] = (Smoothing / 100.0) * pixelG[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelG, i, 0, 0); pixelB_buffer[i] = (Smoothing / 100.0) * pixelB[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelB, i, 0, 0); } for (int i = 0; i < numPixels(); i++) { pixelR[i] = pixelR_buffer[i]; pixelG[i] = pixelG_buffer[i]; pixelB[i] = pixelB_buffer[i]; setPixelColor(i, pixelR[i], pixelG[i], pixelB[i]); } show(); } /****************** Icon ******************/ void NeoPatterns::Icon(uint8_t fontchar, String iconcolor, uint8_t interval) { // Save last effect, should be called after completion again SavedPattern = ActivePattern; SavedInterval = Interval; SavedTotalSteps = TotalSteps; SavedIndex = Index; SavedColor1 = Color1; SavedDirection = Direction; SavedPlasmaPhase = PlasmaPhase; SavedPlasmaPhaseIncrement = PlasmaPhaseIncrement; SavedPlasmaColorStretch = PlasmaColorStretch; ActivePattern = ICON; Interval = interval; TotalSteps = 80; Index = 80; Color1 = parseColor(iconcolor); FontChar = fontchar; Direction = REVERSE; } void NeoPatterns::IconUpdate() { for (int i = 0; i < numPixels(); i++) { uint64_t mask = 1LL << (uint64_t)i; if ( (font[FontChar]&mask) == 0) { setPixelColor(numToPos(i), Color(0, 0, 0)); //bit is 0 at pos i } else { float _brightness = 1.0 - ( (TotalSteps - Index) * 1.0 / TotalSteps ); uint8_t _r = (uint8_t)(Color1 >> 16); uint8_t _g = (uint8_t)(Color1 >> 8); uint8_t _b = (uint8_t)Color1; setPixelColor(numToPos(i), Color(_r * _brightness, _g * _brightness, _b * _brightness)); //bit is 1 at pos i } } show(); Increment(); } void NeoPatterns::IconComplete() { // Reload last effect ActivePattern = SavedPattern; Interval = SavedInterval; TotalSteps = SavedTotalSteps; Index = SavedIndex; Color1 = SavedColor1; Direction = SavedDirection; PlasmaPhase = SavedPlasmaPhase; PlasmaPhaseIncrement = SavedPlasmaPhaseIncrement; PlasmaColorStretch = SavedPlasmaColorStretch; } // Based upon https://github.com/johncarl81/neopixelplasma void NeoPatterns::Plasma(float phase, float phaseIncrement, float colorStretch, uint8_t interval) { ActivePattern = PLASMA; Interval = interval; PlasmaPhase = phase; PlasmaPhaseIncrement = phaseIncrement; PlasmaColorStretch = colorStretch; } void NeoPatterns::PlasmaUpdate() { PlasmaPhase += PlasmaPhaseIncrement; int edge = (int)sqrt(numPixels()); // The two points move along Lissajious curves, see: http://en.wikipedia.org/wiki/Lissajous_curve // The sin() function returns values in the range of -1.0..1.0, so scale these to our desired ranges. // The phase value is multiplied by various constants; I chose these semi-randomly, to produce a nice motion. Point p1 = { (sin(PlasmaPhase * 1.000) + 1.0) * (edge / 2), (sin(PlasmaPhase * 1.310) + 1.0) * (edge / 2) }; Point p2 = { (sin(PlasmaPhase * 1.770) + 1.0) * (edge / 2), (sin(PlasmaPhase * 2.865) + 1.0) * (edge / 2) }; Point p3 = { (sin(PlasmaPhase * 0.250) + 1.0) * (edge / 2), (sin(PlasmaPhase * 0.750) + 1.0) * (edge / 2)}; byte row, col; // For each row... for ( row = 0; row < edge; row++ ) { float row_f = float(row); // Optimization: Keep a floating point value of the row number, instead of recasting it repeatedly. // For each column... for ( col = 0; col < edge; col++ ) { float col_f = float(col); // Optimization. // Calculate the distance between this LED, and p1. Point dist1 = { col_f - p1.x, row_f - p1.y }; // The vector from p1 to this LED. float distance1 = sqrt( dist1.x * dist1.x + dist1.y * dist1.y ); // Calculate the distance between this LED, and p2. Point dist2 = { col_f - p2.x, row_f - p2.y }; // The vector from p2 to this LED. float distance2 = sqrt( dist2.x * dist2.x + dist2.y * dist2.y ); // Calculate the distance between this LED, and p3. Point dist3 = { col_f - p3.x, row_f - p3.y }; // The vector from p3 to this LED. float distance3 = sqrt( dist3.x * dist3.x + dist3.y * dist3.y ); // Warp the distance with a sin() function. As the distance value increases, the LEDs will get light,dark,light,dark,etc... // You can use a cos() for slightly different shading, or experiment with other functions. Go crazy! float color_1 = distance1; // range: 0.0...1.0 float color_2 = distance2; float color_3 = distance3; float color_4 = (sin( distance1 * distance2 * PlasmaColorStretch )) + 2.0 * 0.5; // Square the color_f value to weight it towards 0. The image will be darker and have higher contrast. color_1 *= color_1 * color_4; color_2 *= color_2 * color_4; color_3 *= color_3 * color_4; color_4 *= color_4; // Scale the color up to 0..7 . Max brightness is 7. //strip.setPixelColor(col + (edge * row), strip.Color(color_4, 0, 0) ); setPixelColor(col + (edge * row), Color(color_1, color_2, color_3)); } } show(); } /****************** Helper functions ******************/ void NeoPatterns::SetColor1(uint32_t color) { Color1 = color; } void NeoPatterns::SetColor2(uint32_t color) { Color2 = color; } // Calculate 50% dimmed version of a color (used by ScannerUpdate) uint32_t NeoPatterns::DimColor(uint32_t color) { // Shift R, G and B components one bit to the right uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1); return dimColor; } // Set all pixels to a color (synchronously) void NeoPatterns::ColorSet(uint32_t color) { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, color); } show(); } void NeoPatterns::ColorSetParameters(String parameters) { None(); ActivePattern = FILL; ColorSet(parseColor(parameters)); } // Returns the Red component of a 32-bit color uint8_t NeoPatterns::Red(uint32_t color) { return (color >> 16) & 0xFF; } // Returns the Green component of a 32-bit color uint8_t NeoPatterns::Green(uint32_t color) { return (color >> 8) & 0xFF; } // Returns the Blue component of a 32-bit color uint8_t NeoPatterns::Blue(uint32_t color) { return color & 0xFF; } // Input a value 0 to 255 to get a color value. // The colors are a transition r - g - b - back to r. uint32_t NeoPatterns::Wheel(byte WheelPos) { WheelPos = 255 - WheelPos; if (WheelPos < 85) { return Color(255 - WheelPos * 3, 0, WheelPos * 3); } else if (WheelPos < 170) { WheelPos -= 85; return Color(0, WheelPos * 3, 255 - WheelPos * 3); } else { WheelPos -= 170; return Color(WheelPos * 3, 255 - WheelPos * 3, 0); } } uint32_t NeoPatterns::Wheel(byte WheelPos, float brightness) { WheelPos = 255 - WheelPos; // OnDebugOutput(String("Value ") + String (WheelPos * 3) + String(" converted by brightness ") + String(brightness, 6) + String(" to ") + String(int((float)(WheelPos * 3) * brightness))); if (WheelPos < 85) { return Color(int((float)(255 - WheelPos * 3) * brightness), 0, int((float)(WheelPos * 3) * brightness)); } if (WheelPos < 170) { WheelPos -= 85; return Color(0, int((float)(WheelPos * 3) * brightness), int((float)(255 - WheelPos * 3) * brightness)); } WheelPos -= 170; return Color(int((float)(WheelPos * 3) * brightness), int((float)(255 - WheelPos * 3) * brightness), 0); } // Convert x y pixel position to matrix position uint8_t NeoPatterns::xyToPos(int x, int y) { if (y % 2 == 0) { return (y * 8 + x); } else { return (y * 8 + (7 - x)); } } //convert pixel number to actual 8x8 matrix position uint8_t NeoPatterns::numToPos(int num) { int x = num % 8; int y = num / 8; return xyToPos(x, y); } // Convert pixel number to actual 8x8 matrix position in a spiral uint8_t NeoPatterns::numToSpiralPos(int num) { int edge = (int)sqrt(numPixels()); int findx = edge - 1; // 7 int findy = 0; int stepsize = edge - 1; // initial value (0..7) int stepnumber = 0; // each "step" should be used twice int count = -1; int dir = 1; // direction: 0 = incX, 1=incY, 2=decX, 3=decY if (num < edge) { return num; // trivial } for (int i = edge; i <= num; i++) { count++; if (count == stepsize) { count = 0; // Change direction dir++; stepnumber++; if (stepnumber == 2) { stepsize -= 1; stepnumber = 0; } if (dir == 4) { dir = 0; } } switch (dir) { case 0: findx++; break; case 1: findy++; break; case 2: findx--; break; case 3: findy--; break; } } return xyToPos(findx, findy); } uint8_t NeoPatterns::getAverage(uint8_t array[], uint8_t i, int x, int y) { // TODO: This currently works only with 8x8 (64 pixel)! uint16_t sum = 0; uint8_t count = 0; if (i >= 8) { //up sum += array[i - 8]; count++; } if (i < (64 - 8)) { //down sum += array[i + 8]; count++; } if (i >= 1) { //left sum += array[i - 1]; count++; } if (i < (64 - 1)) { //right sum += array[i + 1]; count++; } return sum / count; } uint32_t NeoPatterns::parseColor(String value) { if (value.charAt(0) == '#') { //solid fill String color = value.substring(1); int number = (int) strtol( &color[0], NULL, 16); // Split them up into r, g, b values int r = number >> 16; int g = number >> 8 & 0xFF; int b = number & 0xFF; return Color(r, g, b); } return 0; }