flm01/uc/main.c

284 lines
7.4 KiB
C
Raw Normal View History

2009-06-05 19:59:55 +00:00
//
// main.1mhz.c : AVR uC code for flukso sensor board
// Copyright (c) 2008-2009 jokamajo.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
2009-06-05 19:59:55 +00:00
#include <string.h>
#include <stdlib.h>
#include "wiring/wiring_private.h"
2009-06-06 11:11:00 +00:00
#include "main.h"
2009-06-05 19:59:55 +00:00
#include <avr/io.h>
// pin/register/ISR definitions
#include <avr/interrupt.h>
// eeprom library
#include <avr/eeprom.h>
// watchdog timer library
#include <avr/wdt.h>
// variable declarations
volatile struct state aux[4] = {{false, false, START}, {false, false, START}, {false, false, START}, {false, false, START}};
volatile struct sensor EEMEM EEPROM_measurements[4] = {{SENSOR0, START}, {SENSOR1, START}, {SENSOR2, START}, {SENSOR3, START}};
volatile struct sensor measurements[4];
// interrupt service routine for INT0
ISR(INT0_vect) {
measurements[0].value++;
aux[0].pulse = true;
}
// interrupt service routine for INT1
ISR(INT1_vect) {
measurements[1].value++;
aux[1].pulse = true;
}
// interrupt service routine for PCI2 (PCINT20 = pin4)
ISR(PCINT2_vect) {
if (aux[2].toggle == false) {
aux[2].toggle = true;
}
else {
measurements[2].value++;
aux[2].pulse = true;
aux[2].toggle = false;
}
}
// interrupt service routine for PCI0 (PCINT1 = pin9)
ISR(PCINT0_vect) {
if (aux[3].toggle == false) {
aux[3].toggle = true;
}
else {
measurements[3].value++;
aux[3].pulse = true;
aux[3].toggle = false;
}
}
ISR(TIMER2_OVF_vect) {
// read ADC result
// add to nano(Wh) counter
aux[0].nano += (uint32_t)METERCONST * ADC;
if (aux[0].nano > 1000000000) {
printString("msg ADC0 sample value: ");
printIntegerInBase((unsigned long)ADC, 10);
printString("\n");
//debugging
measurements[0].value++;
aux[0].pulse = true;
aux[0].nano -= 1000000000;
}
// start a new ADC conversion
ADCSRA |= (1<<ADSC);
}
// interrupt service routine for analog comparator
ISR(ANALOG_COMP_vect) {
//debugging:
//measurements[3].value = END3;
//measurements[2].value = END2;
//measurements[1].value = END1;
//measurements[0].value = END0;
//disable uC sections to consume less power while writing to EEPROM
//disable UART Tx and Rx:
UCSR0B &= ~((1<<RXEN0) | (1<<TXEN0));
//disable ADC:
ADCSRA &= ~(1<<ADEN);
for (i=0; i<4; i++)
eeprom_write_block((const void*)&measurements[i].value, (void*)&EEPROM_measurements[i].value, 4);
//indicate writing to EEPROM has finished by lighting up the green LED
PORTB |= (1<<PB5);
//enable UART Tx and Rx:
UCSR0B |= (1<<RXEN0) | (1<<TXEN0);
// enable ADC and start a first ADC conversion
ADCSRA |= (1<<ADEN) | (1<<ADSC);
printString("msg metervalues written to EEPROM (BROWN-OUT)\n");
}
// interrupt service routine for watchdog timeout
ISR(WDT_vect) {
for (i=0; i<4; i++)
eeprom_write_block((const void*)&measurements[i].value, (void*)&EEPROM_measurements[i].value, 4);
printString("msg metervalues written to EEPROM (WDT)\n");
}
// disable WDT
void WDT_off(void) {
cli();
wdt_reset();
// clear the WDT reset flag in the status register
MCUSR &= ~(1<<WDRF);
// timed sequence to be able to change the WDT settings afterwards
WDTCSR |= (1<<WDCE) | (1<<WDE);
// disable WDT
WDTCSR = 0x00;
}
// enable WDT
void WDT_on(void) {
// enable the watchdog timer (1s)
wdt_enable(WDTO_1S);
// set watchdog interrupt enable flag
WDTCSR |= (1<<WDIE);
}
void setup()
{
// WDT_off(); -> moved the call to this function to start of the main loop, before init
// clock settings: divide by 8 to get a 1Mhz clock, allows us to set the BOD level to 1.8V (DS p.37)
CLKPR = (1<<CLKPCE);
CLKPR = (1<<CLKPS1) | (1<<CLKPS0);
// load meterid's and metervalues from EEPROM
eeprom_read_block((void*)&measurements, (const void*)&EEPROM_measurements, sizeof(measurements));
// init serial port
beginSerial(4800);
_delay_ms(100);
//LEDPIN=PB5/SCK configured as output pin
DDRB |= (1<<PB5);
// PD2=INT0 and PD3=INT1 configuration
// set as input pin with 20k pull-up enabled
PORTD |= (1<<PD2) | (1<<PD3);
// INT0 and INT1 to trigger an interrupt on a falling edge
EICRA = (1<<ISC01) | (1<<ISC11);
// enable INT0 and INT1 interrupts
EIMSK = (1<<INT0) | (1<<INT1);
// PD4=PCINT20 configuration
// set as input pin with 20k pull-up enabled
PORTD |= (1<<PD4);
//enable pin change interrupt on PCINT20
PCMSK2 |= (1<<PCINT20);
//pin change interrupt enable 2
PCICR |= (1<<PCIE2);
// PB1=PCINT1 configuration
// set as input pin with 20k pull-up enabled
PORTB |= (1<<PB1);
//enable pin change interrupt on PCINT1
PCMSK0 |= (1<<PCINT1);
//pin change interrupt enable 0
PCICR |= (1<<PCIE0);
// analog comparator setup for brown-out detection
// PD7=AIN1 configured by default as input to obtain high impedance
// disable digital input cicuitry on AIN0 and AIN1 pins to reduce leakage current
DIDR1 |= (1<<AIN1D) | (1<<AIN0D);
2009-06-05 19:59:55 +00:00
// comparing AIN1 (Vcc/4.4) to bandgap reference (1.1V)
// bandgap select | AC interrupt enable | AC interrupt on rising edge (DS p.243)
ACSR |= (1<<ACBG) | (1<<ACIE) | (1<<ACIS1) | (1<<ACIS0);
// Timer2 normal operation
// Timer2 clock prescaler set to 32 => fTOV2 = 1000kHz / 256 / 32 = 122.07Hz
TCCR2B |= (1<<CS21) | (1<<CS20);
TIMSK2 |= (1<<TOIE2);
// disable digital input cicuitry on ADCx pins to reduce leakage current
DIDR0 |= (1<<ADC5D) | (1<<ADC4D) | (1<<ADC3D) | (1<<ADC2D) | (1<<ADC1D) | (1<<ADC0D);
2009-06-05 19:59:55 +00:00
// select VBG as reference for ADC
ADMUX |= (1<<REFS1) | (1<<REFS0);
// ADC0 selected by default
// ADC prescaler set to 16 => 1000kHz / 8 = 125kHz
ADCSRA |= (1<<ADPS1) | (1<<ADPS0);
// enable ADC and start a first ADC conversion
ADCSRA |= (1<<ADEN) | (1<<ADSC);
//set global interrupt enable in SREG to 1 (DS p.12)
sei();
}
void send(const struct sensor *measurement)
{
uint8_t i, length;
char buffer[49];
// determine the length of value
ltoa(measurement->value, buffer, 10);
length = strlen(buffer);
strcpy(buffer, "pls ");
strcpy(&buffer[4], measurement->id);
strcpy(&buffer[36], ":");
// insert leading 0's
for (i=0; i<10-length; i++) strcpy(&buffer[37+i], "0");
ltoa(measurement->value, &buffer[47-length], 10);
strcpy(&buffer[47], "\n");
printString(buffer);
// blink the green LED
PORTB |= (1<<PB5);
_delay_ms(100);
PORTB &= ~(1<<PB5);
}
void loop()
{
// check whether we have to send out a pls to the deamon
for (i=0; i<4; i++) {
if (aux[i].pulse == true) {
send((const struct sensor *)&measurements[i]);
aux[i].pulse = false;
}
}
// reset the watchdog timer
wdt_reset();
}
int main(void)
{
WDT_off();
setup();
// insert a startup delay of 20s to prevent interference with redboot
// interrupts are already enabled at this stage
// so the pulses are counted but not sent to the deamon
for (i=0; i<4; i++) _delay_ms(5000);
WDT_on();
2009-06-05 19:59:55 +00:00
for (;;) loop();
return 0;
}