flm01/mote/v2/avr/main.c
2010-12-29 21:45:41 +01:00

375 lines
9.9 KiB
C

//
// basiciotest.c : test code for the io and buffer ops of the UART and SPI ports
//
// Copyright (c) 2010 flukso.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#include <stdlib.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/eeprom.h>
#include <util/delay.h>
#include "main.h"
#include "uart.h"
#include "spi.h"
#include "ctrl.h"
#include "global.h"
#include "encode.h"
volatile uint8_t spi_status, spi_high_hex;
uint8_t EEMEM first_EEPROM_byte_not_used_to_protect_from_brownout_corruption = 0xab;
uint16_t EEMEM EEPROM_version = 210;
uint16_t version;
volatile struct event_struct EEMEM EEPROM_event = {0, 0};
volatile struct event_struct event;
uint8_t EEMEM EEPROM_phy_to_log[MAX_SENSORS] = {0, 1, 2, 3, 4, 5};
uint8_t phy_to_log[MAX_SENSORS];
volatile struct sensor_struct EEMEM EEPROM_sensor[MAX_SENSORS];
volatile struct sensor_struct sensor[MAX_SENSORS];
volatile struct state_struct state[MAX_SENSORS];
volatile uint8_t muxn = 0;
volatile uint16_t timer = 0;
volatile struct time_struct time = {0, 0};
ISR(SPI_STC_vect)
{
uint8_t spi_rx, rx, tx;
uint16_t spi_tx;
// the SPI is double-buffered, requiring two NO_OPs when switching from Tx to Rx
if (spi_status & (SPI_NO_OP_1 | SPI_NO_OP_2)) {
spi_status--;
return;
}
// do we have to transmit the first byte?
if (spi_status & SPI_START_TX) {
received_from_spi(SPI_FORWARD_TO_CTRL_PORT);
spi_status &= ~SPI_START_TX;
return;
}
// are we in Tx mode?
if (spi_status & SPI_TRANSMIT) {
if (spi_status & SPI_HIGH_HEX) {
received_from_spi(spi_high_hex);
spi_status &= ~SPI_HIGH_HEX;
return;
}
if (spi_status & SPI_TO_FROM_UART) {
if (!uartReceiveByte(&tx)) {
received_from_spi(SPI_END_OF_TX);
spi_status &= ~SPI_TRANSMIT;
spi_status |= SPI_NO_OP_2;
return;
}
}
else {
if (ctrlGetFromTxBuffer(&tx)) {
received_from_spi(tx);
return;
}
else {
received_from_spi(SPI_FORWARD_TO_UART_PORT);
spi_status |= SPI_TO_FROM_UART;
return;
}
}
spi_tx = btoh(tx);
spi_high_hex = (uint8_t)spi_tx;
spi_status |= SPI_HIGH_HEX;
received_from_spi((uint8_t)(spi_tx >> 8));
return;
}
// we're in Rx mode
switch (spi_rx = received_from_spi(0x00)) {
case SPI_END_OF_TX:
spi_status |= SPI_TRANSMIT | SPI_START_TX;
spi_status &= ~(SPI_HIGH_HEX | SPI_TO_FROM_UART);
break;
case SPI_END_OF_MESSAGE:
if (!(spi_status & SPI_TO_FROM_UART)) {
ctrlAddToRxBuffer(spi_rx);
spi_status |= SPI_NEW_CTRL_MSG;
}
break;
case SPI_FORWARD_TO_UART_PORT:
spi_status |= SPI_TO_FROM_UART;
break;
case SPI_FORWARD_TO_CTRL_PORT:
spi_status &= ~SPI_TO_FROM_UART;
break;
default:
if (spi_status & SPI_HIGH_HEX) {
rx = htob(((uint16_t)spi_high_hex << 8) + spi_rx);
uartAddToTxBuffer(rx);
}
else {
if (spi_status & SPI_TO_FROM_UART) {
spi_high_hex = spi_rx;
}
else {
ctrlAddToRxBuffer(spi_rx);
return;
}
}
// toggle the HEX bit in spi_status
spi_status ^= SPI_HIGH_HEX;
}
}
ISR(INT0_vect)
{
uint8_t muxn_l = phy_to_log[3];
register_pulse(&sensor[muxn_l], &state[muxn_l]);
}
ISR(INT1_vect)
{
uint8_t muxn_l = phy_to_log[4];
register_pulse(&sensor[muxn_l], &state[muxn_l]);
}
void register_pulse(volatile struct sensor_struct *psensor, volatile struct state_struct *pstate)
{
psensor->counter += psensor->meterconst;
pstate->flags |= STATE_PULSE;
pstate->timestamp = time.ms;
}
ISR(TIMER1_COMPA_vect)
{
uint8_t muxn_l = phy_to_log[muxn];
MacU16X16to32(state[muxn_l].nano, sensor[muxn_l].meterconst, ADC);
if (state[muxn_l].nano > WATT) {
sensor[muxn_l].counter++;
state[muxn_l].flags |= STATE_PULSE;
state[muxn_l].nano -= WATT;
state[muxn_l].pulse_count++;
}
if ((timer == SECOND) && (muxn == muxn_l)) {
state[muxn].nano_start = state[muxn].nano_end;
state[muxn].nano_end = state[muxn].nano;
state[muxn].pulse_count_final = state[muxn].pulse_count;
state[muxn].pulse_count = 0;
state[muxn].flags |= STATE_POWER_CALC;
}
/* Cycle through the available ADC input channels (0/1/2). */
muxn++;
if (!(muxn %= 3)) timer++;
if (timer > SECOND) timer = 0;
/* In order to map this to 1000Hz (=ms) we have to skip every second interrupt. */
if (!time.skip) time.ms++ ;
time.skip ^= 1;
ADMUX &= 0xF8;
ADMUX |= muxn;
/* Start a new ADC conversion. */
ADCSRA |= (1<<ADSC);
}
ISR(ANALOG_COMP_vect)
{
uint8_t i;
PORTB |= (1<<PB0);
//disable uC sections to consume less power while writing to EEPROM
//disable UART Tx and Rx:
UCSR0B &= ~((1<<RXEN0) | (1<<TXEN0));
//disable ADC:
ADCSRA &= ~(1<<ADEN);
for (i=0; i<128; i++)
eeprom_write_byte((uint8_t *)i, i);
//enable UART Tx and Rx:
UCSR0B |= (1<<RXEN0) | (1<<TXEN0);
// enable ADC and start a first ADC conversion
ADCSRA |= (1<<ADEN) | (1<<ADSC);
PORTB &= ~(1<<PB0);
}
void setup_datastructs(void)
{
eeprom_read_block((void*)&version, (const void*)&EEPROM_version, sizeof(version));
eeprom_read_block((void*)&event, (const void*)&EEPROM_event, sizeof(event));
eeprom_read_block((void*)&phy_to_log, (const void*)&EEPROM_phy_to_log, sizeof(phy_to_log));
eeprom_read_block((void*)&sensor, (const void*)&EEPROM_sensor, sizeof(sensor));
}
void setup_pulse_input(void)
{
// PD2=INT0 and PD3=INT1 configuration
// set as input pin with 20k pull-up enabled
PORTD |= (1<<PD2) | (1<<PD3);
// INT0 and INT1 to trigger an interrupt on a falling edge
EICRA = (1<<ISC01) | (1<<ISC11);
// enable INT0 and INT1 interrupts
EIMSK = (1<<INT0) | (1<<INT1);
}
void setup_adc(void)
{
// disable digital input cicuitry on ADCx pins to reduce leakage current
DIDR0 |= (1<<ADC5D) | (1<<ADC4D) | (1<<ADC3D) | (1<<ADC2D) | (1<<ADC1D) | (1<<ADC0D);
// select VBG as reference for ADC
ADMUX |= (1<<REFS1) | (1<<REFS0);
// ADC prescaler set to 32 => 3686.4kHz / 32 = 115.2kHz (DS p.258)
ADCSRA |= (1<<ADPS2) | (1<<ADPS0);
// enable ADC and start a first ADC conversion
ADCSRA |= (1<<ADEN) | (1<<ADSC);
}
void setup_timer1(void)
{
// Timer1 clock prescaler set to 1 => fTOV1 = 3686.4kHz / 65536 = 56.25Hz (DS p.134)
TCCR1B |= (1<<CS10);
// Increase sampling frequency to 2kHz (= 667Hz per channel) with an error of 0.01% (DS p.122)
OCR1A = 0x0732;
// Timer1 set to CTC mode (DS p.133)
TCCR1B |= 1<<WGM12;
// Enable output compare match interrupt for timer1 (DS p.136)
TIMSK1 |= (1<<OCIE1A);
#if DBG > 0
// Set PB1=OC1A as output pin
DDRB |= (1<<DDB1);
// Toggle pin OC1A=PB1 on compare match
TCCR1A |= 1<<COM1A0;
#endif
}
void setup_analog_comparator(void)
{
// analog comparator setup for brown-out detection
// PD7=AIN1 configured by default as input to obtain high impedance
// disable digital input cicuitry on AIN0 and AIN1 pins to reduce leakage current
DIDR1 |= (1<<AIN1D) | (1<<AIN0D);
// comparing AIN1 (Vcc/4.4) to bandgap reference (1.1V)
// bandgap select | AC interrupt enable | AC interrupt on rising edge (DS p.243)
ACSR |= (1<<ACBG) | (1<<ACIE) | (1<<ACIS1) | (1<<ACIS0);
}
void calculate_power(volatile struct state_struct *pstate)
{
int32_t rest, power = 0;
uint8_t pulse_count;
cli();
rest = pstate->nano_end - pstate->nano_start;
pulse_count = pstate->pulse_count_final;
sei();
// Since the AVR has no dedicated floating-point hardware, we need
// to resort to fixed-point calculations for converting nWh/s to W.
// 1W = 10^6/3.6 nWh/s
// power[watt] = 3.6/10^6 * rest[nWh/s]
// power[watt] = 3.6/10^6 * 65536 * (rest[nWh/s] / 65536)
// power[watt] = 3.6/10^6 * 65536 * 262144 / 262144 * (rest[nWh/s] / 65536)
// power[watt] = 61847.53 / 262144 * (rest[nWh/s] / 65536)
// We have to correct for only using 666 samples iso 2000/3, so:
// power[watt] = 61847.53 * 1/666 * 2000/3 / 262144 * (rest[nWh/s] / 65536)
// power[watt] = 61909.44 / 262144 * (rest[nWh/s] / 65536)
// We round the constant down to 61909 to prevent 'underflow' in the
// consecutive else statement.
// The error introduced in the fixed-point rounding equals 7.1*10^-6.
MacU16X16to32(power, (uint16_t)(labs(rest)/65536), 61909);
power /= 262144;
if (rest >= 0) {
power += pulse_count*3600;
}
else {
power = pulse_count*3600 - power;
}
pstate->power = power;
}
int main(void)
{
uint8_t i;
// RS-485: Configure PD5=DE as output pin with low as default
DDRD |= (1<<DDD5);
// set high to transmit
//PORTD |= (1<<PD5);
setup_datastructs();
setup_adc();
setup_timer1();
setup_pulse_input();
setup_analog_comparator();
// initialize the CTRL buffers
ctrlInit();
// initialize the UART hardware and buffers
uartInit();
// initialize the SPI in slave mode
setup_spi(SPI_MODE_0, SPI_MSB, SPI_INTERRUPT, SPI_SLAVE);
for(;;) {
if (spi_status & SPI_NEW_CTRL_MSG) {
//ctrlRxToTxLoop();
ctrlDecode();
spi_status &= ~SPI_NEW_CTRL_MSG;
}
for (i = 0; i < 3; i++) {
if (state[i].flags & STATE_POWER_CALC) {
calculate_power(&state[i]);
state[i].flags &= ~STATE_POWER_CALC;
state[i].flags |= STATE_POWER;
}
}
// toggle the LED=PB0 pin
_delay_ms(50);
DDRB ^= (1<<PB0);
}
return 0;
}