lib added

This commit is contained in:
Stefan Kögl 2012-10-25 17:07:57 +02:00
parent 5db54d5a9f
commit 1f87bf360e
5 changed files with 815 additions and 0 deletions

428
libs/oven_control.cpp Normal file
View file

@ -0,0 +1,428 @@
#include "oven_control.h"
#include <DFR_Key.h>
#include <LiquidCrystal.h>
#include "profile.h"
//Pin assignments for SainSmart LCD Keypad Shield
LiquidCrystal _lcd(8, 9, 4, 5, 6, 7);
DFR_Key _keypad;
Profile _profile;
OvenCtl::OvenCtl() {
time = 0;
temperature = 25;
last_temperature = 25;
actual_dt = 0;
// timestamps of event beginnings/ends
Ts_time_start = 0;
Ts_time_end = 0;
Tl_time_start = 0;
Tl_time_end = 0;
Tp_time_start = 0;
Tp_time_end = 0;
// thermostat
set_min = 0;
set_max = 0;
set_dt_min = 0;
set_dt_max = 0;
state = 0;
error_condition = 0;
is_oven_heating = false;
// ui stuff
led_on = false;
disable_checks = true;
lcd = &_lcd;
keypad = &_keypad;
profile = &_profile;
lcd->begin(16, 2);
}
void OvenCtl::send_state() {
Serial.write(time);
Serial.write(temperature);
Serial.write(last_temperature);
Serial.write(state);
Serial.write(error_condition);
}
void OvenCtl::send_config() {
int tmp;
for (int i=0;i < PI_END; i++)
{
tmp = profile->data[i];
Serial.write(tmp & 0xff);
Serial.write((tmp >> 8 ) & 0xff);
}
// Serial.print("\n");
}
void OvenCtl::handle_states() {
if (state > 0)
time++;
get_temp();
check_dt();
// if (!error_condition) {
// print_debug();
// }
// else {
// set_error_state();
// }
//
switch (state) {
case CONFIG_STATE:
if (profile->handle_config_state(lcd, keypad))
set_start_state();
break;
case START_STATE:
handle_start_state();
break;
case PREHEAT_STATE:
handle_preheat_state();
break;
case RAMP_UP_STATE:
handle_ramp_up_state();
break;
case TAL_FIRST_STATE:
handle_tal_first_state();
break;
case PEAK_STATE:
handle_peak_state();
break;
case TAL_SECOND_STATE:
Tl_time_end = time;
handle_tal_second_state();
break;
case RAMP_DOWN_STATE:
handle_ramp_down_state();
break;
case END_STATE:
handle_end_state();
break;
case ERROR_STATE:
handle_error_state();
break;
default:
break;
}
control_oven();
if (state > 0) {
print_status();
send_state();
delay(1000);
}
}
void OvenCtl::print_profile_state() {
}
void OvenCtl::print_status() {
String tmp("T: ");
if (time < 10)
tmp += "00";
else if (time < 100)
tmp += "0";
tmp += time;
tmp += " Tmp: ";
if (temperature < 10)
tmp += "00";
else if (temperature < 100)
tmp += "0";
tmp += temperature;
lcd->setCursor(0, 0);
lcd->print(tmp);
tmp = "Profile: ";
tmp += state;
tmp += "/";
tmp += END_STATE;
lcd->setCursor(0, 1);
lcd->print(tmp);
lcd->setCursor(13, 1);
if (is_oven_heating)
lcd->print("on ");
else
lcd->print("off");
}
void OvenCtl::control_oven() {
if (temperature < set_min && !is_oven_heating) {
is_oven_heating = true;
Serial.println("Oven turned on");
}
else if (temperature > set_min && is_oven_heating) {
is_oven_heating = false;
Serial.println("Oven turned off");
}
}
void OvenCtl::set_temp(int min, int max, int dt_min, int dt_max) {
set_min = min;
set_max = max;
set_dt_min = dt_min;
set_dt_max = dt_max;
}
void OvenCtl::get_temp() {
last_temperature = temperature;
temperature = int(float(analogRead(2)) * 0.2929);
actual_dt = temperature - last_temperature;
}
void OvenCtl::check_dt() {
if (disable_checks)
return;
if (actual_dt > set_dt_max) {
error_condition |= E_DT_MAX;
}
if (actual_dt < set_dt_min) {
error_condition |= E_DT_MIN;
}
}
void OvenCtl::check_max_duration() {
if (disable_checks)
return;
Serial.println(time);
if (time > profile->data[PI_TIME_MAX]) {
error_condition |= E_TIME_MAX;
}
Serial.println(time);
}
void OvenCtl::check_Ts_duration_min() {
if (disable_checks)
return;
Tl_time_end = time;
if (time - Tl_time_start < profile->data[PI_TL_DURATION_MIN]) {
error_condition |= E_TL_TOO_SHORT;
}
}
void OvenCtl::check_Ts_duration_max() {
if (disable_checks)
return;
if (time - Ts_time_start > profile->data[PI_TL_DURATION_MAX]) {
error_condition |= E_TS_TOO_LONG;
}
}
void OvenCtl::check_Tl_duration_min() {
if (disable_checks)
return;
Tl_time_end = time;
if (time - Tl_time_start < profile->data[PI_TL_DURATION_MIN]) {
error_condition |= E_TL_TOO_SHORT;
}
}
void OvenCtl::check_Tl_duration_max() {
if (disable_checks)
return;
if (time - Tl_time_start > profile->data[PI_TL_DURATION_MAX]) {
error_condition |= E_TL_TOO_LONG;
}
}
void OvenCtl::check_Tp_duration_min() {
Tp_time_end = time;
if (time - Tp_time_start < profile->data[PI_TP_DURATION_MIN]) {
error_condition |= E_TP_TOO_SHORT;
}
}
void OvenCtl::check_Tp_duration_max() {
if (disable_checks)
return;
if (time - Tp_time_start > profile->data[PI_TP_DURATION_MAX]) {
error_condition |= E_TP_TOO_LONG;
}
}
void OvenCtl::set_config_state() {
send_config();
profile->print_config_state_0(lcd);
}
void OvenCtl::set_start_state() {
led_on = false;
digitalWrite(13, LOW);
error_condition = 0;
state = START_STATE;
get_temp();
last_temperature = temperature;
actual_dt = temperature - last_temperature;
set_temp(profile->data[PI_TP]-5, profile->data[PI_TP], 0, profile->data[PI_RAMP_UP_MAX]);
lcd->clear();
}
void OvenCtl::set_preheat_state() {
Serial.println("Changing state to PREHEAT_STATE");
state++;
}
void OvenCtl::set_ramp_up_state() {
Serial.println("Changed state to RAMP_UP_STATE");
state++;
}
void OvenCtl::set_tal_first_state() {
Serial.println("Changed state to TAL_FIRST_STATE");
state++;
}
void OvenCtl::set_peak_state() {
Serial.println("Changed state to PEAK_STATE");
state++;
}
void OvenCtl::set_tal_second_state() {
Serial.println("Changed state to TAL_SECOND_STATE");
set_temp(25, 25, -3, -6);
state++;
}
void OvenCtl::set_ramp_down_state() {
Serial.println("Changed state to RAMP_DOWN_STATE");
state++;
}
void OvenCtl::set_end_state() {
Serial.println("Changed state to END_STATE");
state++;
}
void OvenCtl::set_error_state() {
if (state != ERROR_STATE) {
Serial.println("Changed state to ERROR_STATE");
set_temp(0, 0, 0, 0);
state = ERROR_STATE;
}
}
void OvenCtl::handle_config_state() {
if (profile->handle_config_state(lcd, keypad))
state++;
}
void OvenCtl::handle_start_state() {
check_max_duration();
Serial.println(time);
if (temperature > profile->data[PI_TS_MIN]) {
Ts_time_start = time;
set_preheat_state();
}
}
void OvenCtl::handle_preheat_state() {
check_Ts_duration_max();
check_max_duration();
if (temperature > profile->data[PI_TS_MAX]) {
check_Ts_duration_min();
set_ramp_up_state();
}
}
void OvenCtl::handle_ramp_up_state() {
check_max_duration();
if (temperature > profile->data[PI_TL]) {
Tl_time_start = time;
set_tal_first_state();
}
}
void OvenCtl::handle_tal_first_state() {
check_max_duration();
check_Tl_duration_max();
if (temperature > profile->data[PI_TP] - 5) {
Tp_time_start = time;
set_peak_state();
}
}
void OvenCtl::handle_peak_state() {
check_Tl_duration_max();
check_Tp_duration_max();
if (time - Tp_time_start > profile->data[PI_TP_DURATION_MAX]) {
check_Tp_duration_min();
set_tal_second_state();
}
}
void OvenCtl::handle_tal_second_state() {
check_Tl_duration_max();
if (temperature < profile->data[PI_TL]) {
check_Tl_duration_min();
set_ramp_down_state();
}
}
void OvenCtl::handle_ramp_down_state() {
if (temperature < profile->data[PI_TS_MIN]) {
set_end_state();
}
}
void OvenCtl::handle_end_state() {
// while(true) {
// continue;
// }
}
void OvenCtl::handle_error_state() {
if (led_on) {
digitalWrite(13, LOW);
led_on = false;
}
else {
digitalWrite(13, HIGH);
led_on = true;
}
// if (error_condition & E_DT_MIN)
// Serial.println(PSTR("Error: delta °K/second too low"));
// if (error_condition & E_DT_MAX)
// Serial.println("Error: delta °K/second too big");
// if (error_condition & E_TIME_MAX)
// Serial.println("Error: reflow process does take too long");
// if (error_condition & E_TS_TOO_SHORT)
// Serial.println("Error: heatup duration was too short");
// if (error_condition & E_TS_TOO_LONG)
// Serial.println("Error: heatup duration was too long");
// if (error_condition & E_TL_TOO_SHORT)
// Serial.println("Error: temperature above liquidus duration was too short");
// if (error_condition & E_TL_TOO_LONG)
// Serial.println("Error: temperature above liquidus duration was too long");
// if (error_condition & E_TP_TOO_LONG)
// Serial.println("Error: peak temperature duration was too short");
// if (error_condition & E_TP_TOO_SHORT)
// Serial.println("Error: peak temperature duration was too long");
}

116
libs/oven_control.h Normal file
View file

@ -0,0 +1,116 @@
#ifndef _H_OVEN_CTL
#define _H_OVEN_CTL
//
//
// states
#define CONFIG_STATE 0
#define START_STATE 1
#define PREHEAT_STATE 2
#define RAMP_UP_STATE 3
#define TAL_FIRST_STATE 4
#define PEAK_STATE 5
#define TAL_SECOND_STATE 6
#define RAMP_DOWN_STATE 7
#define END_STATE 8
#define ERROR_STATE 9
// error conditions
#define E_DT_MIN 1 // temperature dt too small
#define E_DT_MAX 2 // temperature dt too big
#define E_TIME_MAX 4 // reflow process does take too long
#define E_TS_TOO_SHORT 8 // Ts duration too short
#define E_TS_TOO_LONG 16 // Ts duration too long
#define E_TL_TOO_SHORT 32 // Tl duration too short
#define E_TL_TOO_LONG 64 // Tl duration too long
#define E_TP_TOO_SHORT 128 // Tp duration too short
#define E_TP_TOO_LONG 256 // Tp duration too long
#define E_CONFIG 512 // error happened in config state
#include <Arduino.h>
class LiquidCrystal;
class DFR_Key;
class Profile;
class OvenCtl {
public:
// system time, timestamps and temperatures from sensors
int time; // profile seconds
int temperature; // actual oven temp
int last_temperature; // last oven temp
int actual_dt; // actual difference from last to actual temperatur
// timestamps of event beginnings/ends
int Ts_time_start;
int Ts_time_end;
int Tl_time_start;
int Tl_time_end;
int Tp_time_start;
int Tp_time_end;
// thermostat
int set_min;
int set_max;
int set_dt_min;
int set_dt_max;
// ui stuff
boolean led_on;
boolean disable_checks;
// state machine
unsigned int error_condition;
unsigned int state;
boolean is_oven_heating;
LiquidCrystal * lcd;
DFR_Key * keypad;
Profile * profile;
OvenCtl();
void handle_states();
void print_profile_state();
void print_status();
void control_oven();
void set_temp(int, int, int, int);
void get_temp();
void check_dt();
void check_max_duration();
void set_config_state();
void set_start_state();
void set_preheat_state();
void set_tal_first_state();
void set_ramp_up_state();
void set_peak_state();
void set_tal_second_state();
void set_ramp_down_state();
void set_end_state();
void set_error_state();
void handle_config_state();
void handle_start_state();
void handle_ramp_up_state();
void handle_preheat_state();
void handle_tal_first_state();
void handle_peak_state();
void handle_tal_second_state();
void handle_ramp_down_state();
void handle_end_state();
void handle_error_state();
void check_Ts_duration_min();
void check_Ts_duration_max();
void check_Tl_duration_min();
void check_Tl_duration_max();
void check_Tp_duration_min();
void check_Tp_duration_max();
void send_state();
void send_config();
};
#endif

191
libs/profile.cpp Normal file
View file

@ -0,0 +1,191 @@
#include "profile.h"
#include "oven_control.h"
#include <LiquidCrystal.h>
#include <DFR_Key.h>
#define P_TS_MIN 0
#define P_TS_MAX 1
#define P_TL 2
#define P_TP 3
#define P_TIME_MAX 4
// PROFILE TEMP PER SECOND RATES
#define P_RAMP_UP_RATE_MIN 5
#define P_RAMP_UP_RATE_MAX 6
#define P_RAMP_DOWN_MAX 7
#define P_RAMP_DOWN_MIN 8
// PROFILE TEMP DURATIONS
#define P_TS_DURATION_MIN 9
#define P_TS_DURATION_MAX 10
#define P_TL_DURATION_MIN 11
#define P_TL_DURATION_MAX 12
#define P_TP_DURATION_MIN 13
#define P_TP_DURATION_MAX 14
#define P_END 15
Profile::Profile() :
data({150, // °C
200, // °C
217, // °C
260, // 245-260°C
480, // seconds
// profile temp per second rates
0, // not used yet
50, // 3°C/second
-2, // 2°C/seconds min
-6, // 6°C/seconds max
// profile temp durations
60,
180,
60,
150,
20,
40}),
config_index(0),
config_state(0),
key(NO_KEY) {}
boolean Profile::handle_config_state(LiquidCrystal * lcd, DFR_Key * keypad) {
boolean changed = false;
key = keypad->getKey();
switch (config_state) {
case 0:
if (key == SELECT_KEY) {
config_state = 2;
}
else if (key > 0) {
config_state++;
print_config_state(lcd);
}
break;
case 1:
switch (key) {
case LEFT_KEY:
config_index = (config_index-1) % P_END;
changed = true;
break;
case RIGHT_KEY:
config_index = (config_index+1) % P_END;
changed = true;
break;
case UP_KEY:
data[config_index]++;
changed = true;
break;
case DOWN_KEY:
data[config_index]--;
changed = true;
break;
case SELECT_KEY:
config_state = 2;
break;
default:
;
}
if (changed)
print_config_state(lcd);
break;
case 2:
return true;
}
return false;
}
void Profile::print_config_state_0(LiquidCrystal * lcd) {
lcd->clear();
lcd->setCursor(0, 0);
lcd->print("start | config");
lcd->setCursor(0, 1);
lcd->print("[sel] | [other]");
}
void Profile::print_config_state(LiquidCrystal * lcd) {
lcd->clear();
switch (config_index) {
case P_TS_MIN:
lcd->setCursor(0,0);
lcd->print("P_TS_MIN: ");
lcd->print(data[PI_TS_MIN]);
break;
case P_TS_MAX:
lcd->setCursor(0,0);
lcd->print("P_TS_MAX: ");
lcd->print(data[PI_TS_MAX]);
break;
case P_TL:
lcd->setCursor(0,0);
lcd->print("Tl: ");
lcd->print(data[PI_TL]);
break;
case P_TP:
lcd->setCursor(0,0);
lcd->print("Tp: ");
lcd->print(data[PI_TP]);
break;
case P_TIME_MAX:
lcd->setCursor(0,0);
lcd->print("time_max: ");
lcd->print(data[PI_TIME_MAX]);
break;
// PROFILE TEMP PER SECOND RATES
case P_RAMP_UP_RATE_MIN:
lcd->setCursor(0,0);
lcd->print("ramp_up_min: ");
lcd->print(data[PI_RAMP_UP_MIN]);
break;
case P_RAMP_UP_RATE_MAX:
lcd->setCursor(0,0);
lcd->print("ramp_up_max: ");
lcd->print(data[PI_RAMP_UP_MAX]);
break;
case P_RAMP_DOWN_MAX:
lcd->setCursor(0,0);
lcd->print("ramp_down_min: ");
lcd->print(data[PI_RAMP_DOWN_MIN]);
break;
case P_RAMP_DOWN_MIN:
lcd->setCursor(0,0);
lcd->print("ramp_down_max: ");
lcd->print(data[PI_RAMP_DOWN_MAX]);
break;
// PROFILE TEMP DURATIONS
case P_TS_DURATION_MIN:
lcd->setCursor(0,0);
lcd->print("Ts_duration_min: ");
lcd->print(data[PI_TS_DURATION_MIN]);
break;
case P_TS_DURATION_MAX:
lcd->setCursor(0,0);
lcd->print("Ts_duration_max: ");
lcd->print(data[PI_TS_DURATION_MAX]);
break;
case P_TL_DURATION_MIN:
lcd->setCursor(0,0);
lcd->print("Tl_duration_min: ");
lcd->print(data[PI_TL_DURATION_MIN]);
break;
case P_TL_DURATION_MAX:
lcd->setCursor(0,0);
lcd->print("Tl_duration_max: ");
lcd->print(data[PI_TL_DURATION_MAX]);
break;
case P_TP_DURATION_MIN:
lcd->setCursor(0,0);
lcd->print("Tp_duration_min: ");
lcd->print(data[PI_TP_DURATION_MIN]);
break;
case P_TP_DURATION_MAX:
lcd->setCursor(0,0);
lcd->print("Tp_duration_max: ");
lcd->print(data[PI_TP_DURATION_MAX]);
break;
}
}

45
libs/profile.h Normal file
View file

@ -0,0 +1,45 @@
#ifndef _H_PROFILE
#define _H_PROFILE
#include <Arduino.h>
class LiquidCrystal;
class DFR_Key;
#define PI_TS_MIN 0
#define PI_TS_MAX 1
#define PI_TL 2
#define PI_TP 3
#define PI_TIME_MAX 4
// profile temp per second rates
#define PI_RAMP_UP_MIN 5
#define PI_RAMP_UP_MAX 6
#define PI_RAMP_DOWN_MIN 7
#define PI_RAMP_DOWN_MAX 8
// profile temp durations
#define PI_TS_DURATION_MIN 9
#define PI_TS_DURATION_MAX 10
#define PI_TL_DURATION_MIN 11
#define PI_TL_DURATION_MAX 12
#define PI_TP_DURATION_MIN 13
#define PI_TP_DURATION_MAX 14
#define PI_END 15
class Profile {
public:
int data[15];
unsigned int config_index;
int config_state;
int key;
Profile();
boolean handle_config_state(LiquidCrystal * lcd, DFR_Key * keypad);
void print_config_state(LiquidCrystal * lcd);
void print_config_state_0(LiquidCrystal * lcd);
};
#endif

35
libs/ui.h Normal file
View file

@ -0,0 +1,35 @@
// #ifndef _H_UI
// #define _H_UI
//
// #include <LiquidCrystal.h>
// #include <DFR_Key.h>
//
// class Profile {
// public:
// int Ts_min;
// int Ts_max;
// int Tl;
// int Tp;
// int time_max;
//
// // profile temp per second rates
// int ramp_up_min;
// int ramp_up_max;
// int ramp_down_max;
// int ramp_down_min;
//
// // profile temp durations
// int Ts_duration_min;
// int Ts_duration_max;
// int Tl_duration_min;
// int Tl_duration_max;
// int Tp_duration_min;
// int Tp_duration_max;
// int config_index;
//
// Profile();
// void handle_config_state(LiquidCrystal & lcd, DFR_Key & keypad);
// void print_config_state(LiquidCrystal & lcd);
// };
//
// #endif