reflow/libs/oven_control.cpp
Stefan Kögl 1f87bf360e lib added
2012-10-25 17:07:57 +02:00

428 lines
8.8 KiB
C++

#include "oven_control.h"
#include <DFR_Key.h>
#include <LiquidCrystal.h>
#include "profile.h"
//Pin assignments for SainSmart LCD Keypad Shield
LiquidCrystal _lcd(8, 9, 4, 5, 6, 7);
DFR_Key _keypad;
Profile _profile;
OvenCtl::OvenCtl() {
time = 0;
temperature = 25;
last_temperature = 25;
actual_dt = 0;
// timestamps of event beginnings/ends
Ts_time_start = 0;
Ts_time_end = 0;
Tl_time_start = 0;
Tl_time_end = 0;
Tp_time_start = 0;
Tp_time_end = 0;
// thermostat
set_min = 0;
set_max = 0;
set_dt_min = 0;
set_dt_max = 0;
state = 0;
error_condition = 0;
is_oven_heating = false;
// ui stuff
led_on = false;
disable_checks = true;
lcd = &_lcd;
keypad = &_keypad;
profile = &_profile;
lcd->begin(16, 2);
}
void OvenCtl::send_state() {
Serial.write(time);
Serial.write(temperature);
Serial.write(last_temperature);
Serial.write(state);
Serial.write(error_condition);
}
void OvenCtl::send_config() {
int tmp;
for (int i=0;i < PI_END; i++)
{
tmp = profile->data[i];
Serial.write(tmp & 0xff);
Serial.write((tmp >> 8 ) & 0xff);
}
// Serial.print("\n");
}
void OvenCtl::handle_states() {
if (state > 0)
time++;
get_temp();
check_dt();
// if (!error_condition) {
// print_debug();
// }
// else {
// set_error_state();
// }
//
switch (state) {
case CONFIG_STATE:
if (profile->handle_config_state(lcd, keypad))
set_start_state();
break;
case START_STATE:
handle_start_state();
break;
case PREHEAT_STATE:
handle_preheat_state();
break;
case RAMP_UP_STATE:
handle_ramp_up_state();
break;
case TAL_FIRST_STATE:
handle_tal_first_state();
break;
case PEAK_STATE:
handle_peak_state();
break;
case TAL_SECOND_STATE:
Tl_time_end = time;
handle_tal_second_state();
break;
case RAMP_DOWN_STATE:
handle_ramp_down_state();
break;
case END_STATE:
handle_end_state();
break;
case ERROR_STATE:
handle_error_state();
break;
default:
break;
}
control_oven();
if (state > 0) {
print_status();
send_state();
delay(1000);
}
}
void OvenCtl::print_profile_state() {
}
void OvenCtl::print_status() {
String tmp("T: ");
if (time < 10)
tmp += "00";
else if (time < 100)
tmp += "0";
tmp += time;
tmp += " Tmp: ";
if (temperature < 10)
tmp += "00";
else if (temperature < 100)
tmp += "0";
tmp += temperature;
lcd->setCursor(0, 0);
lcd->print(tmp);
tmp = "Profile: ";
tmp += state;
tmp += "/";
tmp += END_STATE;
lcd->setCursor(0, 1);
lcd->print(tmp);
lcd->setCursor(13, 1);
if (is_oven_heating)
lcd->print("on ");
else
lcd->print("off");
}
void OvenCtl::control_oven() {
if (temperature < set_min && !is_oven_heating) {
is_oven_heating = true;
Serial.println("Oven turned on");
}
else if (temperature > set_min && is_oven_heating) {
is_oven_heating = false;
Serial.println("Oven turned off");
}
}
void OvenCtl::set_temp(int min, int max, int dt_min, int dt_max) {
set_min = min;
set_max = max;
set_dt_min = dt_min;
set_dt_max = dt_max;
}
void OvenCtl::get_temp() {
last_temperature = temperature;
temperature = int(float(analogRead(2)) * 0.2929);
actual_dt = temperature - last_temperature;
}
void OvenCtl::check_dt() {
if (disable_checks)
return;
if (actual_dt > set_dt_max) {
error_condition |= E_DT_MAX;
}
if (actual_dt < set_dt_min) {
error_condition |= E_DT_MIN;
}
}
void OvenCtl::check_max_duration() {
if (disable_checks)
return;
Serial.println(time);
if (time > profile->data[PI_TIME_MAX]) {
error_condition |= E_TIME_MAX;
}
Serial.println(time);
}
void OvenCtl::check_Ts_duration_min() {
if (disable_checks)
return;
Tl_time_end = time;
if (time - Tl_time_start < profile->data[PI_TL_DURATION_MIN]) {
error_condition |= E_TL_TOO_SHORT;
}
}
void OvenCtl::check_Ts_duration_max() {
if (disable_checks)
return;
if (time - Ts_time_start > profile->data[PI_TL_DURATION_MAX]) {
error_condition |= E_TS_TOO_LONG;
}
}
void OvenCtl::check_Tl_duration_min() {
if (disable_checks)
return;
Tl_time_end = time;
if (time - Tl_time_start < profile->data[PI_TL_DURATION_MIN]) {
error_condition |= E_TL_TOO_SHORT;
}
}
void OvenCtl::check_Tl_duration_max() {
if (disable_checks)
return;
if (time - Tl_time_start > profile->data[PI_TL_DURATION_MAX]) {
error_condition |= E_TL_TOO_LONG;
}
}
void OvenCtl::check_Tp_duration_min() {
Tp_time_end = time;
if (time - Tp_time_start < profile->data[PI_TP_DURATION_MIN]) {
error_condition |= E_TP_TOO_SHORT;
}
}
void OvenCtl::check_Tp_duration_max() {
if (disable_checks)
return;
if (time - Tp_time_start > profile->data[PI_TP_DURATION_MAX]) {
error_condition |= E_TP_TOO_LONG;
}
}
void OvenCtl::set_config_state() {
send_config();
profile->print_config_state_0(lcd);
}
void OvenCtl::set_start_state() {
led_on = false;
digitalWrite(13, LOW);
error_condition = 0;
state = START_STATE;
get_temp();
last_temperature = temperature;
actual_dt = temperature - last_temperature;
set_temp(profile->data[PI_TP]-5, profile->data[PI_TP], 0, profile->data[PI_RAMP_UP_MAX]);
lcd->clear();
}
void OvenCtl::set_preheat_state() {
Serial.println("Changing state to PREHEAT_STATE");
state++;
}
void OvenCtl::set_ramp_up_state() {
Serial.println("Changed state to RAMP_UP_STATE");
state++;
}
void OvenCtl::set_tal_first_state() {
Serial.println("Changed state to TAL_FIRST_STATE");
state++;
}
void OvenCtl::set_peak_state() {
Serial.println("Changed state to PEAK_STATE");
state++;
}
void OvenCtl::set_tal_second_state() {
Serial.println("Changed state to TAL_SECOND_STATE");
set_temp(25, 25, -3, -6);
state++;
}
void OvenCtl::set_ramp_down_state() {
Serial.println("Changed state to RAMP_DOWN_STATE");
state++;
}
void OvenCtl::set_end_state() {
Serial.println("Changed state to END_STATE");
state++;
}
void OvenCtl::set_error_state() {
if (state != ERROR_STATE) {
Serial.println("Changed state to ERROR_STATE");
set_temp(0, 0, 0, 0);
state = ERROR_STATE;
}
}
void OvenCtl::handle_config_state() {
if (profile->handle_config_state(lcd, keypad))
state++;
}
void OvenCtl::handle_start_state() {
check_max_duration();
Serial.println(time);
if (temperature > profile->data[PI_TS_MIN]) {
Ts_time_start = time;
set_preheat_state();
}
}
void OvenCtl::handle_preheat_state() {
check_Ts_duration_max();
check_max_duration();
if (temperature > profile->data[PI_TS_MAX]) {
check_Ts_duration_min();
set_ramp_up_state();
}
}
void OvenCtl::handle_ramp_up_state() {
check_max_duration();
if (temperature > profile->data[PI_TL]) {
Tl_time_start = time;
set_tal_first_state();
}
}
void OvenCtl::handle_tal_first_state() {
check_max_duration();
check_Tl_duration_max();
if (temperature > profile->data[PI_TP] - 5) {
Tp_time_start = time;
set_peak_state();
}
}
void OvenCtl::handle_peak_state() {
check_Tl_duration_max();
check_Tp_duration_max();
if (time - Tp_time_start > profile->data[PI_TP_DURATION_MAX]) {
check_Tp_duration_min();
set_tal_second_state();
}
}
void OvenCtl::handle_tal_second_state() {
check_Tl_duration_max();
if (temperature < profile->data[PI_TL]) {
check_Tl_duration_min();
set_ramp_down_state();
}
}
void OvenCtl::handle_ramp_down_state() {
if (temperature < profile->data[PI_TS_MIN]) {
set_end_state();
}
}
void OvenCtl::handle_end_state() {
// while(true) {
// continue;
// }
}
void OvenCtl::handle_error_state() {
if (led_on) {
digitalWrite(13, LOW);
led_on = false;
}
else {
digitalWrite(13, HIGH);
led_on = true;
}
// if (error_condition & E_DT_MIN)
// Serial.println(PSTR("Error: delta °K/second too low"));
// if (error_condition & E_DT_MAX)
// Serial.println("Error: delta °K/second too big");
// if (error_condition & E_TIME_MAX)
// Serial.println("Error: reflow process does take too long");
// if (error_condition & E_TS_TOO_SHORT)
// Serial.println("Error: heatup duration was too short");
// if (error_condition & E_TS_TOO_LONG)
// Serial.println("Error: heatup duration was too long");
// if (error_condition & E_TL_TOO_SHORT)
// Serial.println("Error: temperature above liquidus duration was too short");
// if (error_condition & E_TL_TOO_LONG)
// Serial.println("Error: temperature above liquidus duration was too long");
// if (error_condition & E_TP_TOO_LONG)
// Serial.println("Error: peak temperature duration was too short");
// if (error_condition & E_TP_TOO_SHORT)
// Serial.println("Error: peak temperature duration was too long");
}