300 lines
12 KiB
Plaintext
300 lines
12 KiB
Plaintext
|
// IMPORTANT: change 'serialPortIndex' to make this work on your system.
|
||
|
|
||
|
// This is a slightly pared-down version of Adalight specifically for
|
||
|
// Circuit Playground, configured for a single screen and 10 LEDs.
|
||
|
|
||
|
// "Adalight" is a do-it-yourself facsimile of the Philips Ambilight concept
|
||
|
// for desktop computers and home theater PCs. This is the host PC-side code
|
||
|
// written in Processing, intended for use with a USB-connected Circuit
|
||
|
// Playground microcontroller running the accompanying LED streaming code.
|
||
|
// Screen capture adapted from code by Cedrik Kiefer (processing.org forum)
|
||
|
|
||
|
// --------------------------------------------------------------------
|
||
|
// This file is part of Adalight.
|
||
|
|
||
|
// Adalight is free software: you can redistribute it and/or modify
|
||
|
// it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation, either version 3 of
|
||
|
// the License, or (at your option) any later version.
|
||
|
|
||
|
// Adalight is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
// GNU Lesser General Public License for more details.
|
||
|
|
||
|
// You should have received a copy of the GNU Lesser General Public
|
||
|
// License along with Adalight. If not, see
|
||
|
// <http://www.gnu.org/licenses/>.
|
||
|
// --------------------------------------------------------------------
|
||
|
|
||
|
import java.awt.*;
|
||
|
import java.awt.image.*;
|
||
|
import processing.serial.*;
|
||
|
|
||
|
// CONFIGURABLE PROGRAM CONSTANTS --------------------------------------------
|
||
|
|
||
|
// This selects from the list of serial devices connected to the system.
|
||
|
// Use print(Serial.list()); to get a list of ports. Then, counting from 0,
|
||
|
// set this value to the index corresponding to the Circuit Playground port:
|
||
|
|
||
|
static final byte serialPortIndex = 2;
|
||
|
|
||
|
// For multi-screen systems, set this to the index (counting from 0) of the
|
||
|
// display which will have ambient lighting:
|
||
|
|
||
|
static final byte screenNumber = 0;
|
||
|
|
||
|
// Minimum LED brightness; some users prefer a small amount of backlighting
|
||
|
// at all times, regardless of screen content. Higher values are brighter,
|
||
|
// or set to 0 to disable this feature.
|
||
|
|
||
|
static final short minBrightness = 100;
|
||
|
|
||
|
// LED transition speed; it's sometimes distracting if LEDs instantaneously
|
||
|
// track screen contents (such as during bright flashing sequences), so this
|
||
|
// feature enables a gradual fade to each new LED state. Higher numbers yield
|
||
|
// slower transitions (max of 255), or set to 0 to disable this feature
|
||
|
// (immediate transition of all LEDs).
|
||
|
|
||
|
static final short fade = 60;
|
||
|
|
||
|
// Depending on many factors, it may be faster either to capture full
|
||
|
// screens and process only the pixels needed, or to capture multiple
|
||
|
// smaller sub-blocks bounding each region to be processed. Try both,
|
||
|
// look at the reported frame rates in the Processing output console,
|
||
|
// and run with whichever works best for you.
|
||
|
|
||
|
static final boolean useFullScreenCaps = true;
|
||
|
|
||
|
// PER-LED INFORMATION -------------------------------------------------------
|
||
|
|
||
|
// The Circuit Playground version of Adalight operates on a fixed 5x5 grid
|
||
|
// encompassing the full display. 10 elements from this grid correspond to
|
||
|
// the 10 NeoPixels on the Circuit Playground board. The following array
|
||
|
// contains the 2D coordinates of each NeoPixel within that 5x5 grid (0,0 is
|
||
|
// top left); board assumed facing away from display, with USB at bottom:
|
||
|
// .4.5.
|
||
|
// 3...6
|
||
|
// 2...7
|
||
|
// 1...8
|
||
|
// .0.9.
|
||
|
|
||
|
static final int leds[][] = new int[][] {
|
||
|
{1,4}, {0,3}, {0,2}, {0,1}, {1,0},
|
||
|
{3,0}, {4,1}, {4,2}, {4,3}, {3,4}
|
||
|
};
|
||
|
|
||
|
// GLOBAL VARIABLES ---- You probably won't need to modify any of this -------
|
||
|
|
||
|
byte serialData[] = new byte[6 + leds.length * 3],
|
||
|
gamma[][] = new byte[256][3];
|
||
|
short[][] ledColor = new short[leds.length][3],
|
||
|
prevColor = new short[leds.length][3];
|
||
|
Robot bot;
|
||
|
Rectangle dispBounds, ledBounds[];
|
||
|
int pixelOffset[][] = new int[leds.length][256],
|
||
|
screenData[];
|
||
|
PImage preview;
|
||
|
Serial port;
|
||
|
|
||
|
// INITIALIZATION ------------------------------------------------------------
|
||
|
|
||
|
void setup() {
|
||
|
GraphicsEnvironment ge;
|
||
|
GraphicsConfiguration[] gc;
|
||
|
GraphicsDevice[] gd;
|
||
|
int i, row, col;
|
||
|
int[] x = new int[16], y = new int[16];
|
||
|
float f, range, step, start;
|
||
|
|
||
|
this.registerMethod("dispose", this);
|
||
|
print(Serial.list()); // Show list of serial devices/ports
|
||
|
// Open serial port. Change serialPortIndex in the globals to
|
||
|
// select a different port:
|
||
|
port = new Serial(this, Serial.list()[serialPortIndex], 38400);
|
||
|
|
||
|
// Initialize screen capture code for the display's dimensions.
|
||
|
if(useFullScreenCaps == false) ledBounds = new Rectangle[leds.length];
|
||
|
ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
|
||
|
gd = ge.getScreenDevices();
|
||
|
|
||
|
try {
|
||
|
bot = new Robot(gd[screenNumber]);
|
||
|
}
|
||
|
catch(AWTException e) {
|
||
|
System.out.println("new Robot() failed");
|
||
|
exit();
|
||
|
}
|
||
|
gc = gd[screenNumber].getConfigurations();
|
||
|
dispBounds = gc[0].getBounds();
|
||
|
dispBounds.x = dispBounds.y = 0;
|
||
|
preview = createImage(5, 5, RGB);
|
||
|
preview.loadPixels();
|
||
|
|
||
|
// Precompute locations of every pixel to read when downsampling.
|
||
|
// Saves a bunch of math on each frame, at the expense of a chunk
|
||
|
// of RAM. Number of samples is now fixed at 256; this allows for
|
||
|
// some crazy optimizations in the downsampling code.
|
||
|
for(i=0; i<leds.length; i++) { // For each LED...
|
||
|
// Precompute columns, rows of each sampled point for this LED
|
||
|
range = (float)dispBounds.width / 5.0;
|
||
|
step = range / 16.0;
|
||
|
start = range * (float)leds[i][0] + step * 0.5;
|
||
|
for(col=0; col<16; col++) x[col] = (int)(start + step * (float)col);
|
||
|
range = (float)dispBounds.height / 5.0;
|
||
|
step = range / 16.0;
|
||
|
start = range * (float)leds[i][1] + step * 0.5;
|
||
|
for(row=0; row<16; row++) y[row] = (int)(start + step * (float)row);
|
||
|
|
||
|
if(useFullScreenCaps == true) {
|
||
|
// Get offset to each pixel within full screen capture
|
||
|
for(row=0; row<16; row++) {
|
||
|
for(col=0; col<16; col++) {
|
||
|
pixelOffset[i][row * 16 + col] =
|
||
|
y[row] * dispBounds.width + x[col];
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// Calc min bounding rect for LED, get offset to each pixel within
|
||
|
ledBounds[i] = new Rectangle(x[0], y[0], x[15]-x[0]+1, y[15]-y[0]+1);
|
||
|
for(row=0; row<16; row++) {
|
||
|
for(col=0; col<16; col++) {
|
||
|
pixelOffset[i][row * 16 + col] =
|
||
|
(y[row] - y[0]) * ledBounds[i].width + x[col] - x[0];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for(i=0; i<prevColor.length; i++) {
|
||
|
prevColor[i][0] = prevColor[i][1] = prevColor[i][2] =
|
||
|
minBrightness / 3;
|
||
|
}
|
||
|
|
||
|
size(200, 200, JAVA2D); // Preview window for 5x5 grid at 40X scale
|
||
|
noSmooth();
|
||
|
|
||
|
// A special header / magic word is expected by the corresponding LED
|
||
|
// streaming code running on the Arduino. This only needs to be initialized
|
||
|
// once (not in draw() loop) because the number of LEDs remains constant:
|
||
|
serialData[0] = 'A'; // Magic word
|
||
|
serialData[1] = 'd';
|
||
|
serialData[2] = 'a';
|
||
|
serialData[3] = (byte)((leds.length - 1) >> 8); // LED count high byte
|
||
|
serialData[4] = (byte)((leds.length - 1) & 0xff); // LED count low byte
|
||
|
serialData[5] = (byte)(serialData[3] ^ serialData[4] ^ 0x55); // Checksum
|
||
|
|
||
|
// Pre-compute gamma correction table for LED brightness levels:
|
||
|
for(i=0; i<256; i++) {
|
||
|
f = pow((float)i / 255.0, 2.8);
|
||
|
gamma[i][0] = (byte)(f * 255.0 + 0.5);
|
||
|
gamma[i][1] = (byte)(f * 240.0 + 0.5);
|
||
|
gamma[i][2] = (byte)(f * 220.0 + 0.5);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// PER_FRAME PROCESSING ------------------------------------------------------
|
||
|
|
||
|
void draw () {
|
||
|
BufferedImage img;
|
||
|
int i, j, o, c, weight, rb, g, sum, deficit, s2;
|
||
|
int[] pxls, offs;
|
||
|
|
||
|
if(useFullScreenCaps == true ) {
|
||
|
img = bot.createScreenCapture(dispBounds);
|
||
|
// Get location of source pixel data
|
||
|
screenData =
|
||
|
((DataBufferInt)img.getRaster().getDataBuffer()).getData();
|
||
|
}
|
||
|
|
||
|
weight = 257 - fade; // 'Weighting factor' for new frame vs. old
|
||
|
j = 6; // Serial led data follows header / magic word
|
||
|
|
||
|
// This computes a single pixel value filtered down from a rectangular
|
||
|
// section of the screen. While it would seem tempting to use the native
|
||
|
// image scaling in Processing/Java, in practice this didn't look very
|
||
|
// good -- either too pixelated or too blurry, no happy medium. So
|
||
|
// instead, a "manual" downsampling is done here. In the interest of
|
||
|
// speed, it doesn't actually sample every pixel within a block, just
|
||
|
// a selection of 256 pixels spaced within the block...the results still
|
||
|
// look reasonably smooth and are handled quickly enough for video.
|
||
|
|
||
|
for(i=0; i<leds.length; i++) { // For each LED...
|
||
|
if(useFullScreenCaps == true) {
|
||
|
// Get location of source data from prior full-screen capture:
|
||
|
pxls = screenData;
|
||
|
} else {
|
||
|
// Capture section of screen (LED bounds rect) and locate data::
|
||
|
img = bot.createScreenCapture(ledBounds[i]);
|
||
|
pxls = ((DataBufferInt)img.getRaster().getDataBuffer()).getData();
|
||
|
}
|
||
|
offs = pixelOffset[i];
|
||
|
rb = g = 0;
|
||
|
for(o=0; o<256; o++) {
|
||
|
c = pxls[offs[o]];
|
||
|
rb += c & 0x00ff00ff; // Bit trickery: R+B can accumulate in one var
|
||
|
g += c & 0x0000ff00;
|
||
|
}
|
||
|
|
||
|
// Blend new pixel value with the value from the prior frame
|
||
|
ledColor[i][0] = (short)((((rb >> 24) & 0xff) * weight +
|
||
|
prevColor[i][0] * fade) >> 8);
|
||
|
ledColor[i][1] = (short)(((( g >> 16) & 0xff) * weight +
|
||
|
prevColor[i][1] * fade) >> 8);
|
||
|
ledColor[i][2] = (short)((((rb >> 8) & 0xff) * weight +
|
||
|
prevColor[i][2] * fade) >> 8);
|
||
|
// Boost pixels that fall below the minimum brightness
|
||
|
sum = ledColor[i][0] + ledColor[i][1] + ledColor[i][2];
|
||
|
if(sum < minBrightness) {
|
||
|
if(sum == 0) { // To avoid divide-by-zero
|
||
|
deficit = minBrightness / 3; // Spread equally to R,G,B
|
||
|
ledColor[i][0] += deficit;
|
||
|
ledColor[i][1] += deficit;
|
||
|
ledColor[i][2] += deficit;
|
||
|
} else {
|
||
|
deficit = minBrightness - sum;
|
||
|
s2 = sum * 2;
|
||
|
// Spread the "brightness deficit" back into R,G,B in proportion to
|
||
|
// their individual contribition to that deficit. Rather than simply
|
||
|
// boosting all pixels at the low end, this allows deep (but saturated)
|
||
|
// colors to stay saturated...they don't "pink out."
|
||
|
ledColor[i][0] += deficit * (sum - ledColor[i][0]) / s2;
|
||
|
ledColor[i][1] += deficit * (sum - ledColor[i][1]) / s2;
|
||
|
ledColor[i][2] += deficit * (sum - ledColor[i][2]) / s2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Apply gamma curve and place in serial output buffer
|
||
|
serialData[j++] = gamma[ledColor[i][0]][0];
|
||
|
serialData[j++] = gamma[ledColor[i][1]][1];
|
||
|
serialData[j++] = gamma[ledColor[i][2]][2];
|
||
|
// Update pixels in preview image
|
||
|
preview.pixels[leds[i][1] * 5 + leds[i][0]] = 0xFF000000 |
|
||
|
(ledColor[i][0] << 16) | (ledColor[i][1] << 8) | ledColor[i][2];
|
||
|
}
|
||
|
|
||
|
if(port != null) port.write(serialData); // Issue data to Arduino
|
||
|
|
||
|
// Show live preview image
|
||
|
preview.updatePixels();
|
||
|
scale(40);
|
||
|
image(preview, 0, 0);
|
||
|
|
||
|
println(frameRate); // How are we doing?
|
||
|
|
||
|
// Copy LED color data to prior frame array for next pass
|
||
|
arraycopy(ledColor, 0, prevColor, 0, ledColor.length);
|
||
|
}
|
||
|
|
||
|
// CLEANUP -------------------------------------------------------------------
|
||
|
|
||
|
// The DisposeHandler is called on program exit (but before the Serial library
|
||
|
// is shutdown), in order to turn off the LEDs (reportedly more reliable than
|
||
|
// stop()). Seems to work for the window close box and escape key exit, but
|
||
|
// not the 'Quit' menu option. Thanks to phi.lho in the Processing forums.
|
||
|
|
||
|
void dispose() {
|
||
|
// Fill serialData (after header) with 0's, and issue to Arduino...
|
||
|
java.util.Arrays.fill(serialData, 6, serialData.length, (byte)0);
|
||
|
if(port != null) port.write(serialData);
|
||
|
}
|