Merge pull request #11 from dmadison/development
Separated Adalight Functions
This commit is contained in:
commit
393a4ac102
|
@ -4,7 +4,7 @@
|
|||
* library (http://fastled.io) for driving led strips.
|
||||
*
|
||||
* http://github.com/dmadison/Adalight-FastLED
|
||||
* Last Updated: 2017-04-23
|
||||
* Last Updated: 2017-05-05
|
||||
*/
|
||||
|
||||
// --- General Settings
|
||||
|
@ -19,16 +19,18 @@ static const uint8_t
|
|||
|
||||
// --- Serial Settings
|
||||
static const unsigned long
|
||||
SerialSpeed = 115200, // serial port speed, max available
|
||||
SerialTimeout = 150000; // time before LEDs are shut off, if no data
|
||||
// (150 seconds)
|
||||
SerialSpeed = 115200; // serial port speed, max available
|
||||
static const uint16_t
|
||||
SerialTimeout = 150; // time before LEDs are shut off if no data (in seconds)
|
||||
|
||||
// --- Optional Settings (uncomment to add)
|
||||
//#define CLEAR_ON_START // LEDs are cleared on reset
|
||||
//#define GROUND_PIN 10 // additional grounding pin (optional)
|
||||
//#define CALIBRATE // sets all LEDs to the color of the first
|
||||
//#define DEBUG_LED 13 // turns on the Arduino's built-in LED
|
||||
// if the magic word + checksum match
|
||||
|
||||
// --- Debug Settings (uncomment to add)
|
||||
//#define DEBUG_LED 13 // toggles the Arduino's built-in LED on header match
|
||||
//#define DEBUG_FPS 8 // enables a pulse on LED latch
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
|
||||
|
@ -63,6 +65,35 @@ static const uint8_t magic[] = {
|
|||
#define MODE_HEADER 0
|
||||
#define MODE_DATA 1
|
||||
|
||||
static uint8_t
|
||||
mode = MODE_HEADER;
|
||||
static int16_t
|
||||
c;
|
||||
static uint16_t
|
||||
outPos;
|
||||
static uint32_t
|
||||
bytesRemaining;
|
||||
static unsigned long
|
||||
t,
|
||||
lastByteTime,
|
||||
lastAckTime;
|
||||
|
||||
// Debug macros initialized
|
||||
#ifdef DEBUG_LED
|
||||
#define ON 1
|
||||
#define OFF 0
|
||||
|
||||
#define D_LED(x) do {digitalWrite(DEBUG_LED, x);} while(0)
|
||||
#else
|
||||
#define D_LED(x)
|
||||
#endif
|
||||
|
||||
#ifdef DEBUG_FPS
|
||||
#define D_FPS do {digitalWrite(DEBUG_FPS, HIGH); digitalWrite(DEBUG_FPS, LOW);} while (0)
|
||||
#else
|
||||
#define D_FPS
|
||||
#endif
|
||||
|
||||
void setup(){
|
||||
#ifdef GROUND_PIN
|
||||
pinMode(GROUND_PIN, OUTPUT);
|
||||
|
@ -74,6 +105,10 @@ void setup(){
|
|||
digitalWrite(DEBUG_LED, LOW);
|
||||
#endif
|
||||
|
||||
#ifdef DEBUG_FPS
|
||||
pinMode(DEBUG_FPS, OUTPUT);
|
||||
#endif
|
||||
|
||||
FastLED.addLeds<LED_TYPE, Led_Pin, COLOR_ORDER>(leds, Num_Leds);
|
||||
FastLED.setBrightness(Brightness);
|
||||
|
||||
|
@ -82,130 +117,116 @@ void setup(){
|
|||
#endif
|
||||
|
||||
Serial.begin(SerialSpeed);
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
|
||||
lastByteTime = lastAckTime = millis(); // Set initial counters
|
||||
}
|
||||
|
||||
void loop(){
|
||||
adalight();
|
||||
}
|
||||
|
||||
void adalight(){
|
||||
static uint8_t
|
||||
mode = MODE_HEADER;
|
||||
t = millis(); // Save current time
|
||||
|
||||
// If there is new serial data
|
||||
if((c = Serial.read()) >= 0){
|
||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||
|
||||
switch(mode) {
|
||||
case MODE_HEADER:
|
||||
headerMode();
|
||||
break;
|
||||
case MODE_DATA:
|
||||
dataMode();
|
||||
break;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// No new data
|
||||
timeouts();
|
||||
}
|
||||
}
|
||||
|
||||
void headerMode(){
|
||||
static uint8_t
|
||||
headPos,
|
||||
hi, lo, chk;
|
||||
int16_t
|
||||
c;
|
||||
static uint16_t
|
||||
outPos;
|
||||
static uint32_t
|
||||
bytesRemaining;
|
||||
unsigned long
|
||||
t;
|
||||
static unsigned long
|
||||
lastByteTime,
|
||||
lastAckTime;
|
||||
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
|
||||
lastByteTime = lastAckTime = millis();
|
||||
|
||||
// loop() is avoided as even that small bit of function overhead
|
||||
// has a measurable impact on this code's overall throughput.
|
||||
|
||||
for(;;) {
|
||||
|
||||
// Implementation is a simple finite-state machine.
|
||||
// Regardless of mode, check for serial input each time:
|
||||
t = millis();
|
||||
|
||||
if((c = Serial.read()) >= 0){
|
||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||
|
||||
switch(mode) {
|
||||
|
||||
case MODE_HEADER:
|
||||
|
||||
if(headPos < MAGICSIZE){
|
||||
if(c == magic[headPos]) headPos++;
|
||||
else headPos = 0;
|
||||
}
|
||||
else{
|
||||
switch(headPos){
|
||||
case HICHECK:
|
||||
hi = c;
|
||||
headPos++;
|
||||
break;
|
||||
case LOCHECK:
|
||||
lo = c;
|
||||
headPos++;
|
||||
break;
|
||||
case CHECKSUM:
|
||||
chk = c;
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
#ifdef DEBUG_LED
|
||||
digitalWrite(DEBUG_LED, HIGH);
|
||||
#endif
|
||||
|
||||
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
||||
outPos = 0;
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
|
||||
mode = MODE_DATA; // Proceed to latch wait mode
|
||||
}
|
||||
headPos = 0; // Reset header position regardless of checksum result
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(headPos < MAGICSIZE){
|
||||
// Check if magic word matches
|
||||
if(c == magic[headPos]) {headPos++;}
|
||||
else {headPos = 0;}
|
||||
}
|
||||
else{
|
||||
// Magic word matches! Now verify checksum
|
||||
switch(headPos){
|
||||
case HICHECK:
|
||||
hi = c;
|
||||
headPos++;
|
||||
break;
|
||||
|
||||
case MODE_DATA:
|
||||
|
||||
if(bytesRemaining > 0) {
|
||||
if (outPos < sizeof(leds)){
|
||||
#ifdef CALIBRATE
|
||||
if(outPos < 3)
|
||||
ledsRaw[outPos++] = c;
|
||||
else{
|
||||
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
||||
outPos++;
|
||||
}
|
||||
#else
|
||||
ledsRaw[outPos++] = c; // Issue next byte
|
||||
#endif
|
||||
}
|
||||
bytesRemaining--;
|
||||
}
|
||||
if(bytesRemaining == 0) {
|
||||
// End of data -- issue latch:
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
FastLED.show();
|
||||
|
||||
#ifdef DEBUG_LED
|
||||
digitalWrite(DEBUG_LED, LOW);
|
||||
#endif
|
||||
}
|
||||
case LOCHECK:
|
||||
lo = c;
|
||||
headPos++;
|
||||
break;
|
||||
} // end switch
|
||||
} // end serial if
|
||||
else {
|
||||
// No data received. If this persists, send an ACK packet
|
||||
// to host once every second to alert it to our presence.
|
||||
if((t - lastAckTime) > 1000) {
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
lastAckTime = t; // Reset counter
|
||||
}
|
||||
// If no data received for an extended time, turn off all LEDs.
|
||||
if((t - lastByteTime) > SerialTimeout) {
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
|
||||
FastLED.show();
|
||||
lastByteTime = t; // Reset counter
|
||||
}
|
||||
} // end else
|
||||
} // end for(;;)
|
||||
case CHECKSUM:
|
||||
chk = c;
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
D_LED(ON);
|
||||
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
||||
outPos = 0;
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
|
||||
mode = MODE_DATA; // Proceed to latch wait mode
|
||||
}
|
||||
headPos = 0; // Reset header position regardless of checksum result
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
// loop() is avoided as even that small bit of function overhead
|
||||
// has a measurable impact on this code's overall throughput.
|
||||
void dataMode(){
|
||||
// If LED data is not full
|
||||
if (outPos < sizeof(leds)){
|
||||
dataSet();
|
||||
}
|
||||
bytesRemaining--;
|
||||
|
||||
if(bytesRemaining == 0) {
|
||||
// End of data -- issue latch:
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
FastLED.show();
|
||||
D_FPS;
|
||||
D_LED(OFF);
|
||||
}
|
||||
}
|
||||
|
||||
void dataSet(){
|
||||
#ifdef CALIBRATE
|
||||
if(outPos < 3)
|
||||
ledsRaw[outPos++] = c;
|
||||
else{
|
||||
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
||||
outPos++;
|
||||
}
|
||||
#else
|
||||
ledsRaw[outPos++] = c; // Issue next byte
|
||||
#endif
|
||||
}
|
||||
|
||||
void timeouts(){
|
||||
// No data received. If this persists, send an ACK packet
|
||||
// to host once every second to alert it to our presence.
|
||||
if((t - lastAckTime) > 1000) {
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
lastAckTime = t; // Reset counter
|
||||
|
||||
// If no data received for an extended time, turn off all LEDs.
|
||||
if((t - lastByteTime) > SerialTimeout * 1000) {
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
|
||||
FastLED.show();
|
||||
lastByteTime = t; // Reset counter
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
14
README.md
14
README.md
|
@ -27,7 +27,19 @@ Additional settings allow for adjusting:
|
|||
|
||||
There are also optional settings to clear the LEDs on reset, configure a dedicated ground pin, and to put the Arduino into a "calibration" mode, where all LED colors match the first LED.
|
||||
|
||||
Upload to your Arduino and use a corresponding PC application to stream color data. You can get the Processing files from the [main Adalight repository](https://github.com/adafruit/Adalight), though I would recommend using [Patrick Siegler's](https://github.com/psieg/) fork of Lightpacks's Prismatik, which you can find [here](https://github.com/psieg/Lightpack).
|
||||
Upload to your Arduino and use a corresponding PC application to stream color data. You can get the Processing files from the [main Adalight repository](https://github.com/adafruit/Adalight), though I would recommend using [Patrick Siegler's](https://github.com/psieg/) fork of Lightpacks's Prismatik, which you can find [here](https://github.com/psieg/Lightpack/releases).
|
||||
|
||||
## Debug Settings
|
||||
|
||||
The code includes two debugging options:
|
||||
- DEBUG_LED
|
||||
- DEBUG_FPS
|
||||
|
||||
`DEBUG_LED` will turn on the Arduino's built-in LED on a successful header match, and off when the LEDs latch. If your LEDs aren't working, this will help confirm that the Arduino is receiving properly formatted serial data.
|
||||
|
||||
`DEBUG_FPS`, similarly, will toggle a given pin when the LEDs latch. This is useful for measuring framerate with external hardware, like a logic analyzer.
|
||||
|
||||
To enable either of these settings, uncomment their respective '#define' lines.
|
||||
|
||||
## Issues and LED-types
|
||||
|
||||
|
|
Loading…
Reference in New Issue