parent
7d9d3cb7c8
commit
3f62027cf0
|
@ -9,9 +9,9 @@
|
|||
|
||||
// --- General Settings
|
||||
static const uint8_t
|
||||
Num_Leds = 80, // strip length
|
||||
Led_Pin = 6, // Arduino data output pin
|
||||
Brightness = 255; // maximum brightness
|
||||
Num_Leds = 80, // strip length
|
||||
Led_Pin = 6, // Arduino data output pin
|
||||
Brightness = 255; // maximum brightness
|
||||
|
||||
// --- FastLED Setings
|
||||
#define LED_TYPE WS2812B // led strip type for FastLED
|
||||
|
@ -19,10 +19,10 @@ static const uint8_t
|
|||
|
||||
// --- Serial Settings
|
||||
static const unsigned long
|
||||
SerialSpeed = 115200, // serial port speed, max available
|
||||
SerialSpeed = 115200, // serial port speed, max available
|
||||
SerialTimeout = 150000; // time before LEDs are shut off, if no data
|
||||
// (150 seconds)
|
||||
|
||||
// (150 seconds)
|
||||
|
||||
// --- Optional Settings (uncomment to add)
|
||||
//#define CLEAR_ON_START // LEDs are cleared on reset
|
||||
//#define GROUND_PIN 10 // additional grounding pin (optional)
|
||||
|
@ -38,19 +38,19 @@ uint8_t * ledsRaw = (uint8_t *)leds;
|
|||
// A 'magic word' (along with LED count & checksum) precedes each block
|
||||
// of LED data; this assists the microcontroller in syncing up with the
|
||||
// host-side software and properly issuing the latch (host I/O is
|
||||
// likely buffered, making usleep() unreliable for latch). You may see
|
||||
// likely buffered, making usleep() unreliable for latch). You may see
|
||||
// an initial glitchy frame or two until the two come into alignment.
|
||||
// The magic word can be whatever sequence you like, but each character
|
||||
// should be unique, and frequent pixel values like 0 and 255 are
|
||||
// avoided -- fewer false positives. The host software will need to
|
||||
// avoided -- fewer false positives. The host software will need to
|
||||
// generate a compatible header: immediately following the magic word
|
||||
// are three bytes: a 16-bit count of the number of LEDs (high byte
|
||||
// first) followed by a simple checksum value (high byte XOR low byte
|
||||
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
|
||||
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
|
||||
// where 0 = off and 255 = max brightness.
|
||||
|
||||
static const uint8_t magic[] = {
|
||||
'A','d','a'};
|
||||
'A','d','a'};
|
||||
#define MAGICSIZE sizeof(magic)
|
||||
#define HEADERSIZE (MAGICSIZE + 3)
|
||||
|
||||
|
@ -58,143 +58,143 @@ static const uint8_t magic[] = {
|
|||
#define MODE_DATA 2
|
||||
|
||||
void setup(){
|
||||
#ifdef GROUND_PIN
|
||||
pinMode(GROUND_PIN, OUTPUT);
|
||||
digitalWrite(GROUND_PIN, LOW);
|
||||
#endif
|
||||
#ifdef GROUND_PIN
|
||||
pinMode(GROUND_PIN, OUTPUT);
|
||||
digitalWrite(GROUND_PIN, LOW);
|
||||
#endif
|
||||
|
||||
FastLED.addLeds<LED_TYPE, Led_Pin, COLOR_ORDER>(leds, Num_Leds);
|
||||
FastLED.setBrightness(Brightness);
|
||||
FastLED.addLeds<LED_TYPE, Led_Pin, COLOR_ORDER>(leds, Num_Leds);
|
||||
FastLED.setBrightness(Brightness);
|
||||
|
||||
#ifdef CLEAR_ON_START
|
||||
FastLED.show();
|
||||
#endif
|
||||
#ifdef CLEAR_ON_START
|
||||
FastLED.show();
|
||||
#endif
|
||||
|
||||
Serial.begin(SerialSpeed);
|
||||
Serial.begin(SerialSpeed);
|
||||
|
||||
adalight();
|
||||
adalight();
|
||||
}
|
||||
|
||||
void adalight(){
|
||||
// Dirty trick: the circular buffer for serial data is 256 bytes,
|
||||
// and the "in" and "out" indices are unsigned 8-bit types -- this
|
||||
// much simplifies the cases where in/out need to "wrap around" the
|
||||
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
|
||||
// masking and/or conditional code every time one of these indices
|
||||
// needs to change, slowing things down tremendously.
|
||||
|
||||
uint8_t
|
||||
buffer[256],
|
||||
indexIn = 0,
|
||||
indexOut = 0,
|
||||
mode = MODE_HEADER,
|
||||
hi, lo, chk, i;
|
||||
int16_t
|
||||
c;
|
||||
uint16_t
|
||||
bytesBuffered = 0;
|
||||
uint32_t
|
||||
bytesRemaining,
|
||||
outPos;
|
||||
unsigned long
|
||||
lastByteTime,
|
||||
lastAckTime,
|
||||
t;
|
||||
// Dirty trick: the circular buffer for serial data is 256 bytes,
|
||||
// and the "in" and "out" indices are unsigned 8-bit types -- this
|
||||
// much simplifies the cases where in/out need to "wrap around" the
|
||||
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
|
||||
// masking and/or conditional code every time one of these indices
|
||||
// needs to change, slowing things down tremendously.
|
||||
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
uint8_t
|
||||
buffer[256],
|
||||
indexIn = 0,
|
||||
indexOut = 0,
|
||||
mode = MODE_HEADER,
|
||||
hi, lo, chk, i;
|
||||
int16_t
|
||||
c;
|
||||
uint16_t
|
||||
bytesBuffered = 0;
|
||||
uint32_t
|
||||
bytesRemaining,
|
||||
outPos;
|
||||
unsigned long
|
||||
lastByteTime,
|
||||
lastAckTime,
|
||||
t;
|
||||
|
||||
lastByteTime = lastAckTime = millis();
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
|
||||
// loop() is avoided as even that small bit of function overhead
|
||||
// has a measurable impact on this code's overall throughput.
|
||||
lastByteTime = lastAckTime = millis();
|
||||
|
||||
for(;;) {
|
||||
// loop() is avoided as even that small bit of function overhead
|
||||
// has a measurable impact on this code's overall throughput.
|
||||
|
||||
// Implementation is a simple finite-state machine.
|
||||
// Regardless of mode, check for serial input each time:
|
||||
t = millis();
|
||||
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||
buffer[indexIn++] = c;
|
||||
bytesBuffered++;
|
||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||
}
|
||||
else {
|
||||
// No data received. If this persists, send an ACK packet
|
||||
// to host once every second to alert it to our presence.
|
||||
if((t - lastAckTime) > 1000) {
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
lastAckTime = t; // Reset counter
|
||||
}
|
||||
// If no data received for an extended time, turn off all LEDs.
|
||||
if((t - lastByteTime) > SerialTimeout) {
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
|
||||
FastLED.show();
|
||||
lastByteTime = t; // Reset counter
|
||||
}
|
||||
}
|
||||
for(;;) {
|
||||
|
||||
// Implementation is a simple finite-state machine.
|
||||
// Regardless of mode, check for serial input each time:
|
||||
t = millis();
|
||||
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||
buffer[indexIn++] = c;
|
||||
bytesBuffered++;
|
||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||
}
|
||||
else {
|
||||
// No data received. If this persists, send an ACK packet
|
||||
// to host once every second to alert it to our presence.
|
||||
if((t - lastAckTime) > 1000) {
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
lastAckTime = t; // Reset counter
|
||||
}
|
||||
// If no data received for an extended time, turn off all LEDs.
|
||||
if((t - lastByteTime) > SerialTimeout) {
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
|
||||
FastLED.show();
|
||||
lastByteTime = t; // Reset counter
|
||||
}
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
switch(mode) {
|
||||
|
||||
case MODE_HEADER:
|
||||
case MODE_HEADER:
|
||||
|
||||
// In header-seeking mode. Is there enough data to check?
|
||||
if(bytesBuffered >= HEADERSIZE) {
|
||||
// Indeed. Check for a 'magic word' match.
|
||||
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||
if(i == MAGICSIZE) {
|
||||
// Magic word matches. Now how about the checksum?
|
||||
hi = buffer[indexOut++];
|
||||
lo = buffer[indexOut++];
|
||||
chk = buffer[indexOut++];
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
||||
bytesBuffered -= 3;
|
||||
outPos = 0;
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
|
||||
mode = MODE_DATA; // Proceed to latch wait mode
|
||||
}
|
||||
else {
|
||||
// Checksum didn't match; search resumes after magic word.
|
||||
indexOut -= 3; // Rewind
|
||||
}
|
||||
} // else no header match. Resume at first mismatched byte.
|
||||
bytesBuffered -= i;
|
||||
}
|
||||
break;
|
||||
// In header-seeking mode. Is there enough data to check?
|
||||
if(bytesBuffered >= HEADERSIZE) {
|
||||
// Indeed. Check for a 'magic word' match.
|
||||
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||
if(i == MAGICSIZE) {
|
||||
// Magic word matches. Now how about the checksum?
|
||||
hi = buffer[indexOut++];
|
||||
lo = buffer[indexOut++];
|
||||
chk = buffer[indexOut++];
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
||||
bytesBuffered -= 3;
|
||||
outPos = 0;
|
||||
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
|
||||
mode = MODE_DATA; // Proceed to latch wait mode
|
||||
}
|
||||
else {
|
||||
// Checksum didn't match; search resumes after magic word.
|
||||
indexOut -= 3; // Rewind
|
||||
}
|
||||
} // else no header match. Resume at first mismatched byte.
|
||||
bytesBuffered -= i;
|
||||
}
|
||||
break;
|
||||
|
||||
case MODE_DATA:
|
||||
case MODE_DATA:
|
||||
|
||||
if(bytesRemaining > 0) {
|
||||
if(bytesBuffered > 0) {
|
||||
if (outPos < sizeof(leds)){
|
||||
#ifdef CALIBRATE
|
||||
if(outPos < 3)
|
||||
ledsRaw[outPos++] = buffer[indexOut++];
|
||||
else{
|
||||
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
||||
outPos++;
|
||||
indexOut++;
|
||||
}
|
||||
#else
|
||||
ledsRaw[outPos++] = buffer[indexOut++]; // Issue next byte
|
||||
#endif
|
||||
}
|
||||
bytesBuffered--;
|
||||
bytesRemaining--;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// End of data -- issue latch:
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
FastLED.show();
|
||||
}
|
||||
} // end switch
|
||||
} // end for(;;)
|
||||
if(bytesRemaining > 0) {
|
||||
if(bytesBuffered > 0) {
|
||||
if (outPos < sizeof(leds)){
|
||||
#ifdef CALIBRATE
|
||||
if(outPos < 3)
|
||||
ledsRaw[outPos++] = buffer[indexOut++];
|
||||
else{
|
||||
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
||||
outPos++;
|
||||
indexOut++;
|
||||
}
|
||||
#else
|
||||
ledsRaw[outPos++] = buffer[indexOut++]; // Issue next byte
|
||||
#endif
|
||||
}
|
||||
bytesBuffered--;
|
||||
bytesRemaining--;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// End of data -- issue latch:
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
FastLED.show();
|
||||
}
|
||||
} // end switch
|
||||
} // end for(;;)
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
// Not used. See note in adalight() function.
|
||||
// Not used. See note in adalight() function.
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue