Multi-monitor support, speed improvements, LED auto-off and other good stuff

This commit is contained in:
Paint Your Dragon 2011-11-20 14:51:14 -08:00
parent fb1c294fda
commit db2ff234c4
2 changed files with 345 additions and 128 deletions

View File

@ -61,6 +61,11 @@ static const uint8_t magic[] = {'A','d','a'};
#define MODE_HOLD 1
#define MODE_DATA 2
// If no serial data is received for a while, the LEDs are shut off
// automatically. This avoids the annoying "stuck pixel" look when
// quitting LED display programs on the host computer.
static const unsigned long serialTimeout = 15000; // 15 seconds
void setup()
{
// Dirty trick: the circular buffer for serial data is 256 bytes,
@ -82,7 +87,10 @@ void setup()
int32_t
bytesRemaining;
unsigned long
startTime = micros();
startTime,
lastByteTime,
lastAckTime,
t;
LED_DDR |= LED_PIN; // Enable output for LED
LED_PORT &= ~LED_PIN; // LED off
@ -116,6 +124,11 @@ void setup()
delay(1); // One millisecond pause = latch
}
Serial.print("Ada\n"); // Send ACK string to host
startTime = micros();
lastByteTime = lastAckTime = millis();
// loop() is avoided as even that small bit of function overhead
// has a measurable impact on this code's overall throughput.
@ -123,9 +136,26 @@ void setup()
// Implementation is a simple finite-state machine.
// Regardless of mode, check for serial input each time:
t = millis();
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
buffer[indexIn++] = c;
bytesBuffered++;
lastByteTime = lastAckTime = t; // Reset timeout counters
} else {
// No data received. If this persists, send an ACK packet
// to host once every second to alert it to our presence.
if((t - lastAckTime) > 1000) {
Serial.print("Ada\n"); // Send ACK string to host
lastAckTime = t; // Reset counter
}
// If no data received for an extended time, turn off all LEDs.
if((t - lastByteTime) > serialTimeout) {
for(c=0; c<32767; c++) {
for(SPDR=0; !(SPSR & _BV(SPIF)); );
}
delay(1); // One millisecond pause = latch
lastByteTime = t; // Reset counter
}
}
switch(mode) {

View File

@ -1,172 +1,359 @@
// "Adalight" is a do-it-yourself facsimile of the Philips Ambilight concept
// for desktop computers and home theater PCs. This is the host PC-side code
// written in Processing; intended for use with a USB-connected Arduino
// written in Processing, intended for use with a USB-connected Arduino
// microcontroller running the accompanying LED streaming code. Requires one
// strand of Digital RGB LED Pixels (Adafruit product ID #322, specifically
// the newer WS2801-based type, strand of 25) and a 5 Volt power supply (such
// as Adafruit #276). You may need to adapt the code and the hardware
// arrangement for your specific display configuration.
// or more strands of Digital RGB LED Pixels (Adafruit product ID #322,
// specifically the newer WS2801-based type, strand of 25) and a 5 Volt power
// supply (such as Adafruit #276). You may need to adapt the code and the
// hardware arrangement for your specific display configuration.
// Screen capture adapted from code by Cedrik Kiefer (processing.org forum)
import java.awt.*;
import java.awt.image.*;
import processing.serial.*;
// This array contains the 2D image coordinates corresponding to each pixel
// in the LED strand, which forms a ring around the perimeter of the screen
// (with a one pixel gap at the bottom to accommodate the monitor stand).
// CONFIGURABLE PROGRAM CONSTANTS --------------------------------------------
static final int coord[][] = new int[][] {
{3,5}, {2,5}, {1,5}, {0,5}, // Bottom edge, left half
{0,4}, {0,3}, {0,2}, {0,1}, // Left edge
{0,0}, {1,0}, {2,0}, {3,0}, {4,0}, {5,0}, {6,0}, {7,0}, {8,0}, // Top edge
{8,1}, {8,2}, {8,3}, {8,4}, // Right edge
{8,5}, {7,5}, {6,5}, {5,5} // Bottom edge, right half
// Minimum LED brightness; some users prefer a small amount of backlighting
// at all times, regardless of screen content. Higher values are brighter,
// or set to 0 to disable this feature.
static final short minBrightness = 120;
// LED transition speed; it's sometimes distracting if LEDs instantaneously
// track screen contents (such as during bright flashing sequences), so this
// feature enables a gradual fade to each new LED state. Higher numbers yield
// slower transitions (max of 255), or set to 0 to disable this feature
// (immediate transition of all LEDs).
static final short fade = 75;
// Pixel size for the live preview image.
static final int pixelSize = 20;
// Serial device timeout (in milliseconds), for locating Arduino device
// running the corresponding LEDstream code. See notes later in the code...
// in some situations you may want to entirely comment out that block.
static final int timeout = 5000; // 5 seconds
// PER-DISPLAY INFORMATION ---------------------------------------------------
// This array contains details for each display that the software will
// process. If you have screen(s) attached that are not among those being
// "Adalighted," they should not be in this list. Each triplet in this
// array represents one display. The first number is the system screen
// number...typically the "primary" display on most systems is identified
// as screen #1, but since arrays are indexed from zero, use 0 to indicate
// the first screen, 1 to indicate the second screen, and so forth. This
// is the ONLY place system screen numbers are used...ANY subsequent
// references to displays are an index into this list, NOT necessarily the
// same as the system screen number. For example, if you have a three-
// screen setup and are illuminating only the third display, use '2' for
// the screen number here...and then, in subsequent section, '0' will be
// used to refer to the first/only display in this list.
// The second and third numbers of each triplet represent the width and
// height of a grid of LED pixels attached to the perimeter of this display.
// For example, '9,6' = 9 LEDs across, 6 LEDs down.
static final int displays[][] = new int[][] {
{0,9,6} // Screen 0, 9 LEDs across, 6 LEDs down
//,{1,9,6} // Screen 1, also 9 LEDs across and 6 LEDs down
};
static final int arrayWidth = 9, // Width of Adalight array, in LED pixels
arrayHeight = 6, // Height of Adalight array, in LED pixels
imgScale = 20, // Size of displayed preview
samples = 20, // Samples (per axis) when down-scaling
s2 = samples * samples;
// PER-LED INFORMATION -------------------------------------------------------
byte[] buffer = new byte[6 + coord.length * 3];
// This array contains the 2D coordinates corresponding to each pixel in the
// LED strand, in the order that they're connected (i.e. the first element
// here belongs to the first LED in the strand, second element is the second
// LED, and so forth). Each triplet in this array consists of a display
// number (an index into the display array above, NOT necessarily the same as
// the system screen number) and an X and Y coordinate specified in the grid
// units given for that display. {0,0,0} is the top-left corner of the first
// display in the array.
// For our example purposes, the coordinate list below forms a ring around
// the perimeter of a single screen, with a one pixel gap at the bottom to
// accommodate a monitor stand. Modify this to match your own setup:
static final int leds[][] = new int[][] {
{0,3,5}, {0,2,5}, {0,1,5}, {0,0,5}, // Bottom edge, left half
{0,0,4}, {0,0,3}, {0,0,2}, {0,0,1}, // Left edge
{0,0,0}, {0,1,0}, {0,2,0}, {0,3,0}, {0,4,0}, // Top edge
{0,5,0}, {0,6,0}, {0,7,0}, {0,8,0}, // More top edge
{0,8,1}, {0,8,2}, {0,8,3}, {0,8,4}, // Right edge
{0,8,5}, {0,7,5}, {0,6,5}, {0,5,5} // Bottom edge, right half
/* Hypothetical second display has the same arrangement as the first.
But you might not want both displays completely ringed with LEDs;
the screens might be positioned where they share an edge in common.
,{1,3,5}, {1,2,5}, {1,1,5}, {1,0,5}, // Bottom edge, left half
{1,0,4}, {1,0,3}, {1,0,2}, {1,0,1}, // Left edge
{1,0,0}, {1,1,0}, {1,2,0}, {1,3,0}, {1,4,0}, // Top edge
{1,5,0}, {1,6,0}, {1,7,0}, {1,8,0}, // More top edge
{1,8,1}, {1,8,2}, {1,8,3}, {1,8,4}, // Right edge
{1,8,5}, {1,7,5}, {1,6,5}, {1,5,5} // Bottom edge, right half
*/
};
// GLOBAL VARIABLES ---- You probably won't need to modify any of this -------
byte[] serialData = new byte[6 + leds.length * 3];
short[][] ledColor = new short[leds.length][3],
prevColor = new short[leds.length][3];
byte[][] gamma = new byte[256][3];
GraphicsDevice[] gs;
PImage preview = createImage(arrayWidth, arrayHeight, RGB);
Rectangle bounds;
int nDisplays = displays.length;
Rectangle[] dispBounds = new Rectangle[displays.length];
int[][] screenData = new int[displays.length][],
pixelOffset = new int[leds.length][256];
PImage[] preview = new PImage[displays.length];
Serial port;
GraphicsDevice[] gd;
DisposeHandler dh; // For disabling LEDs on exit
// INITIALIZATION ------------------------------------------------------------
void setup() {
GraphicsEnvironment ge;
DisplayMode mode;
int i;
float f;
GraphicsConfiguration[] gc;
int d, i, totalWidth, maxHeight, row, col, rowOffset;
float f, startX, curX, curY, incX, incY;
dh = new DisposeHandler(this);
port = new Serial(this, Serial.list()[0], 115200);
dh = new DisposeHandler(this); // Init DisposeHandler ASAP
// Comment out this line to test the software without Arduino:
port = openPort(); // Open serial port to Arduino
size(arrayWidth * imgScale, arrayHeight * imgScale, JAVA2D);
// Initialize capture code for full screen dimensions:
// Initialize screen capture code for each display's dimensions:
ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
gs = ge.getScreenDevices();
mode = gs[0].getDisplayMode();
bounds = new Rectangle(0, 0, screen.width, screen.height);
// A special header / magic word is expected by the corresponding LED
// streaming code running on the Arduino. This only needs to be initialized
// once (not in draw() loop) because the number of LEDs remains constant:
buffer[0] = 'A'; // Magic word
buffer[1] = 'd';
buffer[2] = 'a';
buffer[3] = byte((coord.length - 1) >> 8); // LED count high byte
buffer[4] = byte((coord.length - 1) & 0xff); // LED count low byte
buffer[5] = byte(buffer[3] ^ buffer[4] ^ 0x55); // Checksum
// Pre-compute gamma correction table for LED brightness levels:
for(i = 0; i < 256; i++) {
f = pow(float(i) / 255.0, 2.8);
gamma[i][0] = byte(f * 255.0);
gamma[i][1] = byte(f * 240.0);
gamma[i][2] = byte(f * 220.0);
gd = ge.getScreenDevices();
if(nDisplays > gd.length) nDisplays = gd.length;
totalWidth = maxHeight = 0;
for(d=0; d<nDisplays; d++) { // For each display...
gc = gd[displays[d][0]].getConfigurations();
dispBounds[d] = gc[0].getBounds();
dispBounds[d].x = dispBounds[d].y = 0;
preview[d] = createImage(displays[d][1], displays[d][2], RGB);
preview[d].loadPixels();
totalWidth += displays[d][1];
if(d > 0) totalWidth++;
if(displays[d][2] > maxHeight) maxHeight = displays[d][2];
}
}
void draw () {
BufferedImage desktop;
PImage screenShot;
int i, j, c;
// Capture screen
try {
desktop = new Robot(gs[0]).createScreenCapture(bounds);
}
catch(AWTException e) {
System.err.println("Screen capture failed.");
return;
}
screenShot = new PImage(desktop); // Convert Image to PImage
screenShot.loadPixels(); // Make pixel array readable
// Downsample blocks of interest into LED output buffer:
preview.loadPixels(); // Also display in preview image
j = 6; // Data follows LED header / magic word
for(i = 0; i < coord.length; i++) { // For each LED...
c = block(screenShot, coord[i][0], coord[i][1]);
buffer[j++] = gamma[(c >> 16) & 0xff][0];
buffer[j++] = gamma[(c >> 8) & 0xff][1];
buffer[j++] = gamma[ c & 0xff][2];
preview.pixels[coord[i][1] * arrayWidth + coord[i][0]] = c;
}
preview.updatePixels();
// Show preview image
scale(imgScale);
image(preview,0,0);
println(frameRate);
port.write(buffer);
}
// This method computes a single pixel value filtered down from a rectangular
// section of the screen. While it would seem tempting to use the native
// image scaling in Processing, in practice this didn't look very good -- the
// extreme downsampling, coupled with the native interpolation mode, results
// in excessive scintillation with video content. An alternate approach
// using the Java AWT AreaAveragingScaleFilter filter produces wonderfully
// smooth results, but is too slow for filtering full-screen video. So
// instead, a "manual" downsampling method is used here. In the interest of
// speed, it doesn't actually sample every pixel within a block, just a 20x20
// grid...the results still look reasonably smooth and are handled quickly
// enough for video. Scaling the full screen image also wastes a lot of
// cycles on center pixels that are never used for the LED output; this
// method gets called only for perimeter pixels. Even then, you may want to
// set your monitor for a lower resolution before running this sketch.
color block(PImage image, int x, int y) {
int c, r, g, b, row, col, rowOffset;
float startX, curX, curY, incX, incY;
startX = float(screen.width / arrayWidth ) *
(float(x) + (0.5 / float(samples)));
curY = float(screen.height / arrayHeight) *
(float(y) + (0.5 / float(samples)));
incX = float(screen.width / arrayWidth ) / float(samples);
incY = float(screen.height / arrayHeight) / float(samples);
r = g = b = 0;
for(row = 0; row < samples; row++) {
rowOffset = int(curY) * screen.width;
// Precompute locations of every pixel to read when downsampling.
// Saves a bunch of math on each frame, at the expense of a chunk of RAM;
// but hey, it's not like the screen captures are petite either.
for(i=0; i<leds.length; i++) { // For each LED...
d = leds[i][0]; // Corresponding display index
startX = (float)dispBounds[d].width / (float)displays[d][1] *
((float)leds[i][1] + (0.5 / 16.0));
curY = (float)dispBounds[d].height / (float)displays[d][2] *
((float)leds[i][2] + (0.5 / 16.0));
incX = (float)dispBounds[d].width / (float)displays[d][1] / 16.0;
incY = (float)dispBounds[d].height / (float)displays[d][2] / 16.0;
// Number of samples is now fixed at 256; this allows for some crazy
// optimizations in the downsampling code.
for(row=0; row<16; row++) {
rowOffset = (int)curY * dispBounds[d].width;
curX = startX;
for(col = 0; col < samples; col++) {
c = image.pixels[rowOffset + int(curX)];
r += (c >> 16) & 0xff;
g += (c >> 8) & 0xff;
b += c & 0xff;
for(col=0; col<16; col++) {
pixelOffset[i][row * 16 + col] = rowOffset + (int)curX;
curX += incX;
}
curY += incY;
}
}
return color(r / s2, g / s2, b / s2);
for(i=0; i<prevColor.length; i++) {
prevColor[i][0] = prevColor[i][1] = prevColor[i][2] =
minBrightness / 3;
}
// Preview window shows all screens side-by-side
size(totalWidth * pixelSize, maxHeight * pixelSize, JAVA2D);
// A special header / magic word is expected by the corresponding LED
// streaming code running on the Arduino. This only needs to be initialized
// once (not in draw() loop) because the number of LEDs remains constant:
serialData[0] = 'A'; // Magic word
serialData[1] = 'd';
serialData[2] = 'a';
serialData[3] = (byte)((leds.length - 1) >> 8); // LED count high byte
serialData[4] = (byte)((leds.length - 1) & 0xff); // LED count low byte
serialData[5] = (byte)(serialData[3] ^ serialData[4] ^ 0x55); // Checksum
// Pre-compute gamma correction table for LED brightness levels:
for(i=0; i<256; i++) {
f = pow((float)i / 255.0, 2.8);
gamma[i][0] = (byte)(f * 255.0);
gamma[i][1] = (byte)(f * 240.0);
gamma[i][2] = (byte)(f * 220.0);
}
}
// The DisposeHandler is called on program exit (but before the Serial
// library is shutdown), in order to turn off the LEDs (reportedly more
// reliable than stop()). Seems to work for the window close box and
// escape key exit, but not the 'Quit' menu option.
// Thanks to phi.lho in the Processing forums.
// Open and return serial connection to Arduino running LEDstream code. This
// attempts to open and read from each serial device on the system, until the
// matching "Ada\n" acknowledgement string is found. Due to the serial
// timeout, if you have multiple serial devices/ports and the Arduino is late
// in the list, this can take seemingly forever...so if you KNOW the Arduino
// will always be on a specific port (e.g. "COM6"), you might want to comment
// out most of this to bypass the checks and instead just open that port
// directly! (Modify last line in this method with the serial port name.)
Serial openPort() {
String[] ports;
String ack;
int i, start;
Serial s;
ports = Serial.list(); // List of all serial ports/devices on system.
for(i=0; i<ports.length; i++) { // For each serial port...
System.out.format("Trying serial port %s\n",ports[i]);
try {
s = new Serial(this, ports[i], 115200);
}
catch(Exception e) {
// Can't open port, probably in use by other software.
continue;
}
// Port open...watch for acknowledgement string...
start = millis();
while((millis() - start) < timeout) {
if((s.available() >= 4) &&
((ack = s.readString()) != null) &&
ack.contains("Ada\n")) {
return s; // Got it!
}
}
// Connection timed out. Close port and move on to the next.
s.stop();
}
// Didn't locate a device returning the acknowledgment string.
// Maybe it's out there but running the old LEDstream code, which
// didn't have the ACK. Can't say for sure, so we'll take our
// changes with the first/only serial device out there...
return new Serial(this, ports[0], 115200);
}
// PER_FRAME PROCESSING ------------------------------------------------------
void draw () {
BufferedImage img;
int d, i, j, o, c, weight, rb, g, sum, deficit, s2;
int[] pxls, offs;
// Capture each screen in the displays array. Full screens are captured,
// even though typically only the perimeter is used. Logically it might
// seem that capturing just the sampled areas would be faster, but in
// practice this is not the case...there's a certain latency associated with
// each capture action, and so one large block capture generally finishes
// sooner than a multitude of smaller ones.
for(d=0; d<nDisplays; d++) {
try {
img = new Robot(gd[displays[d][0]]).createScreenCapture(dispBounds[d]);
}
catch(AWTException e) {
System.out.println("Screen capture failed.");
continue;
}
// Get location of source pixel data
screenData[d] = ((DataBufferInt)img.getRaster().getDataBuffer()).getData();
}
weight = 257 - fade; // 'Weighting factor' for new frame vs. old
j = 6; // Serial led data follows header / magic word
// This computes a single pixel value filtered down from a rectangular
// section of the screen. While it would seem tempting to use the native
// image scaling in Processing/Java, in practice this didn't look very
// good -- either too pixelated or too blurry, no happy medium. So
// instead, a "manual" downsampling is done here. In the interest of
// speed, it doesn't actually sample every pixel within a block, just
// a selection of 256 pixels spaced within the block...the results still
// look reasonably smooth and are handled quickly enough for video.
for(i=0; i<leds.length; i++) { // For each LED...
d = leds[i][0]; // Corresponding display index
pxls = screenData[d];
offs = pixelOffset[i];
rb = g = 0;
for(o=0; o<256; o++) {
c = pxls[offs[o]];
rb += c & 0x00ff00ff; // Bit trickery: R+B can accumulate in one var
g += c & 0x0000ff00;
}
// Blend new pixel value with the value from the prior frame
ledColor[i][0] = (short)((((rb >> 24) & 0xff) * weight + prevColor[i][0] * fade) >> 8);
ledColor[i][1] = (short)(((( g >> 16) & 0xff) * weight + prevColor[i][1] * fade) >> 8);
ledColor[i][2] = (short)((((rb >> 8) & 0xff) * weight + prevColor[i][2] * fade) >> 8);
// Boost pixels that fall below the minimum brightness
sum = ledColor[i][0] + ledColor[i][1] + ledColor[i][2];
if(sum < minBrightness) {
if(sum == 0) { // To avoid divide-by-zero
deficit = sum / 3; // Spread equally to R,G,B
ledColor[i][0] += deficit;
ledColor[i][1] += deficit;
ledColor[i][2] += deficit;
} else {
deficit = minBrightness - sum;
s2 = sum * 2;
// Spread the "brightness deficit" back into R,G,B in proportion to
// their individual contribition to that deficit. Rather than simply
// boosting all pixels at the low end, this allows deep (but saturated)
// colors to stay saturated...they don't "pink out."
ledColor[i][0] += deficit * (sum - ledColor[i][0]) / s2;
ledColor[i][1] += deficit * (sum - ledColor[i][1]) / s2;
ledColor[i][2] += deficit * (sum - ledColor[i][2]) / s2;
}
}
// Apply gamma curve and place in serial output buffer
serialData[j++] = gamma[ledColor[i][0]][0];
serialData[j++] = gamma[ledColor[i][1]][1];
serialData[j++] = gamma[ledColor[i][2]][2];
// Update pixels in preview image
preview[d].pixels[leds[i][2] * displays[d][1] + leds[i][1]] =
(ledColor[i][0] << 16) | (ledColor[i][1] << 8) | ledColor[i][2];
}
if(port != null) port.write(serialData); // Issue data to Arduino
// Show live preview image(s)
scale(pixelSize);
for(i=d=0; d<nDisplays; d++) {
preview[d].updatePixels();
image(preview[d], i, 0);
i += displays[d][1] + 1;
}
println(frameRate); // How are we doing?
// Copy LED color data to prior frame array for next pass
arraycopy(ledColor, 0, prevColor, 0, ledColor.length);
}
// CLEANUP -------------------------------------------------------------------
// The DisposeHandler is called on program exit (but before the Serial library
// is shutdown), in order to turn off the LEDs (reportedly more reliable than
// stop()). Seems to work for the window close box and escape key exit, but
// not the 'Quit' menu option. Thanks to phi.lho in the Processing forums.
public class DisposeHandler {
DisposeHandler(PApplet pa) {
pa.registerDispose(this);
}
public void dispose() {
// Fill buffer (after header) with 0's, and issue to Arduino...
Arrays.fill(buffer, 6, buffer.length, byte(0));
port.write(buffer);
// Fill serialData (after header) with 0's, and issue to Arduino...
Arrays.fill(serialData, 6, serialData.length, (byte)0);
if(port != null) port.write(serialData);
}
}