Merge pull request #8 from dmadison/no-buffer

No buffer
This commit is contained in:
David Madison 2017-04-08 09:58:09 -04:00 committed by GitHub
commit f3d194292d
1 changed files with 75 additions and 82 deletions

View File

@ -4,7 +4,7 @@
* library (http://fastled.io) for driving led strips. * library (http://fastled.io) for driving led strips.
* *
* http://github.com/dmadison/Adalight-FastLED * http://github.com/dmadison/Adalight-FastLED
* Last Updated: 2017-03-27 * Last Updated: 2017-04-08
*/ */
// --- General Settings // --- General Settings
@ -52,10 +52,14 @@ uint8_t * ledsRaw = (uint8_t *)leds;
static const uint8_t magic[] = { static const uint8_t magic[] = {
'A','d','a'}; 'A','d','a'};
#define MAGICSIZE sizeof(magic) #define MAGICSIZE sizeof(magic)
#define HEADERSIZE (MAGICSIZE + 3)
// Check values are header byte # - 1, as they are indexed from 0
#define HICHECK (MAGICSIZE)
#define LOCHECK (MAGICSIZE + 1)
#define CHECKSUM (MAGICSIZE + 2)
#define MODE_HEADER 0 #define MODE_HEADER 0
#define MODE_DATA 2 #define MODE_DATA 1
void setup(){ void setup(){
#ifdef GROUND_PIN #ifdef GROUND_PIN
@ -76,26 +80,16 @@ void setup(){
} }
void adalight(){ void adalight(){
// Dirty trick: the circular buffer for serial data is 256 bytes,
// and the "in" and "out" indices are unsigned 8-bit types -- this
// much simplifies the cases where in/out need to "wrap around" the
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
// masking and/or conditional code every time one of these indices
// needs to change, slowing things down tremendously.
uint8_t uint8_t
buffer[256], mode = MODE_HEADER,
indexIn = 0, headPos,
indexOut = 0, hi, lo, chk;
mode = MODE_HEADER,
hi, lo, chk, i;
int16_t int16_t
c; c;
uint16_t uint16_t
bytesBuffered = 0;
uint32_t
bytesRemaining,
outPos; outPos;
uint32_t
bytesRemaining;
unsigned long unsigned long
lastByteTime, lastByteTime,
lastAckTime, lastAckTime,
@ -113,11 +107,69 @@ void adalight(){
// Implementation is a simple finite-state machine. // Implementation is a simple finite-state machine.
// Regardless of mode, check for serial input each time: // Regardless of mode, check for serial input each time:
t = millis(); t = millis();
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
buffer[indexIn++] = c; if((c = Serial.read()) >= 0){
bytesBuffered++;
lastByteTime = lastAckTime = t; // Reset timeout counters lastByteTime = lastAckTime = t; // Reset timeout counters
}
switch(mode) {
case MODE_HEADER:
if(headPos < MAGICSIZE){
if(c == magic[headPos]) headPos++;
else headPos = 0;
}
else{
switch(headPos){
case HICHECK:
hi = c;
headPos++;
break;
case LOCHECK:
lo = c;
headPos++;
break;
case CHECKSUM:
chk = c;
if(chk == (hi ^ lo ^ 0x55)) {
// Checksum looks valid. Get 16-bit LED count, add 1
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
outPos = 0;
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
mode = MODE_DATA; // Proceed to latch wait mode
}
headPos = 0; // Reset header position regardless of checksum result
break;
}
}
break;
case MODE_DATA:
if(bytesRemaining > 0) {
if (outPos < sizeof(leds)){
#ifdef CALIBRATE
if(outPos < 3)
ledsRaw[outPos++] = c;
else{
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
outPos++;
}
#else
ledsRaw[outPos++] = c; // Issue next byte
#endif
}
bytesRemaining--;
}
if(bytesRemaining == 0) {
// End of data -- issue latch:
mode = MODE_HEADER; // Begin next header search
FastLED.show();
}
break;
} // end switch
} // end serial if
else { else {
// No data received. If this persists, send an ACK packet // No data received. If this persists, send an ACK packet
// to host once every second to alert it to our presence. // to host once every second to alert it to our presence.
@ -131,66 +183,7 @@ void adalight(){
FastLED.show(); FastLED.show();
lastByteTime = t; // Reset counter lastByteTime = t; // Reset counter
} }
} } // end else
switch(mode) {
case MODE_HEADER:
// In header-seeking mode. Is there enough data to check?
if(bytesBuffered >= HEADERSIZE) {
// Indeed. Check for a 'magic word' match.
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
if(i == MAGICSIZE) {
// Magic word matches. Now how about the checksum?
hi = buffer[indexOut++];
lo = buffer[indexOut++];
chk = buffer[indexOut++];
if(chk == (hi ^ lo ^ 0x55)) {
// Checksum looks valid. Get 16-bit LED count, add 1
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
bytesBuffered -= 3;
outPos = 0;
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
mode = MODE_DATA; // Proceed to latch wait mode
}
else {
// Checksum didn't match; search resumes after magic word.
indexOut -= 3; // Rewind
}
} // else no header match. Resume at first mismatched byte.
bytesBuffered -= i;
}
break;
case MODE_DATA:
if(bytesRemaining > 0) {
if(bytesBuffered > 0) {
if (outPos < sizeof(leds)){
#ifdef CALIBRATE
if(outPos < 3)
ledsRaw[outPos++] = buffer[indexOut];
else{
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
outPos++;
}
#else
ledsRaw[outPos++] = buffer[indexOut]; // Issue next byte
#endif
}
indexOut++;
bytesBuffered--;
bytesRemaining--;
}
}
else {
// End of data -- issue latch:
mode = MODE_HEADER; // Begin next header search
FastLED.show();
}
} // end switch
} // end for(;;) } // end for(;;)
} }