177 lines
6.0 KiB
C++
177 lines
6.0 KiB
C++
// Slightly modified Adalight protocol implementation that uses FastLED
|
|
// library (http://fastled.io) for driving WS2811/WS2812 led strip
|
|
|
|
#include "FastLED.h"
|
|
|
|
#define NUM_LEDS 80 // strip length
|
|
#define LED_PIN 6 // Arduino data output pin
|
|
#define GROUND_PIN 10 // additional grounding pin (optional)
|
|
#define BRIGHTNESS 255 // maximum brightness
|
|
#define SPEED 115200 // serial port speed, max available
|
|
//#define CALIBRATE // uncomment to set calibration mode
|
|
|
|
// If no serial data is received for a while, the LEDs are shut off
|
|
// automatically. Value in milliseconds.
|
|
static const unsigned long serialTimeout = 150000; // 150 seconds
|
|
|
|
CRGB leds[NUM_LEDS];
|
|
uint8_t * ledsRaw = (uint8_t *)leds;
|
|
|
|
// A 'magic word' (along with LED count & checksum) precedes each block
|
|
// of LED data; this assists the microcontroller in syncing up with the
|
|
// host-side software and properly issuing the latch (host I/O is
|
|
// likely buffered, making usleep() unreliable for latch). You may see
|
|
// an initial glitchy frame or two until the two come into alignment.
|
|
// The magic word can be whatever sequence you like, but each character
|
|
// should be unique, and frequent pixel values like 0 and 255 are
|
|
// avoided -- fewer false positives. The host software will need to
|
|
// generate a compatible header: immediately following the magic word
|
|
// are three bytes: a 16-bit count of the number of LEDs (high byte
|
|
// first) followed by a simple checksum value (high byte XOR low byte
|
|
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
|
|
// where 0 = off and 255 = max brightness.
|
|
|
|
static const uint8_t magic[] = {
|
|
'A','d','a'};
|
|
#define MAGICSIZE sizeof(magic)
|
|
#define HEADERSIZE (MAGICSIZE + 3)
|
|
|
|
#define MODE_HEADER 0
|
|
#define MODE_DATA 2
|
|
|
|
void setup()
|
|
{
|
|
pinMode(GROUND_PIN, OUTPUT);
|
|
digitalWrite(GROUND_PIN, LOW);
|
|
FastLED.addLeds<WS2812B, LED_PIN, GRB>(leds, NUM_LEDS);
|
|
|
|
// Dirty trick: the circular buffer for serial data is 256 bytes,
|
|
// and the "in" and "out" indices are unsigned 8-bit types -- this
|
|
// much simplifies the cases where in/out need to "wrap around" the
|
|
// beginning/end of the buffer. Otherwise there'd be a ton of bit-
|
|
// masking and/or conditional code every time one of these indices
|
|
// needs to change, slowing things down tremendously.
|
|
uint8_t
|
|
buffer[256],
|
|
indexIn = 0,
|
|
indexOut = 0,
|
|
mode = MODE_HEADER,
|
|
hi, lo, chk, i, spiFlag;
|
|
int16_t
|
|
bytesBuffered = 0,
|
|
hold = 0,
|
|
c;
|
|
int32_t
|
|
bytesRemaining;
|
|
unsigned long
|
|
startTime,
|
|
lastByteTime,
|
|
lastAckTime,
|
|
t;
|
|
int32_t outPos = 0;
|
|
|
|
Serial.begin(SPEED); // Teensy/32u4 disregards baud rate; is OK!
|
|
|
|
Serial.print("Ada\n"); // Send ACK string to host
|
|
|
|
startTime = micros();
|
|
lastByteTime = lastAckTime = millis();
|
|
|
|
// loop() is avoided as even that small bit of function overhead
|
|
// has a measurable impact on this code's overall throughput.
|
|
|
|
for(;;) {
|
|
|
|
// Implementation is a simple finite-state machine.
|
|
// Regardless of mode, check for serial input each time:
|
|
t = millis();
|
|
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
|
buffer[indexIn++] = c;
|
|
bytesBuffered++;
|
|
lastByteTime = lastAckTime = t; // Reset timeout counters
|
|
}
|
|
else {
|
|
// No data received. If this persists, send an ACK packet
|
|
// to host once every second to alert it to our presence.
|
|
if((t - lastAckTime) > 1000) {
|
|
Serial.print("Ada\n"); // Send ACK string to host
|
|
lastAckTime = t; // Reset counter
|
|
}
|
|
// If no data received for an extended time, turn off all LEDs.
|
|
if((t - lastByteTime) > serialTimeout) {
|
|
memset(leds, 0, NUM_LEDS * sizeof(struct CRGB)); //filling Led array by zeroes
|
|
FastLED.show();
|
|
lastByteTime = t; // Reset counter
|
|
}
|
|
}
|
|
|
|
switch(mode) {
|
|
|
|
case MODE_HEADER:
|
|
|
|
// In header-seeking mode. Is there enough data to check?
|
|
if(bytesBuffered >= HEADERSIZE) {
|
|
// Indeed. Check for a 'magic word' match.
|
|
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
|
if(i == MAGICSIZE) {
|
|
// Magic word matches. Now how about the checksum?
|
|
hi = buffer[indexOut++];
|
|
lo = buffer[indexOut++];
|
|
chk = buffer[indexOut++];
|
|
if(chk == (hi ^ lo ^ 0x55)) {
|
|
// Checksum looks valid. Get 16-bit LED count, add 1
|
|
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
|
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
|
|
bytesBuffered -= 3;
|
|
outPos = 0;
|
|
memset(leds, 0, NUM_LEDS * sizeof(struct CRGB));
|
|
mode = MODE_DATA; // Proceed to latch wait mode
|
|
}
|
|
else {
|
|
// Checksum didn't match; search resumes after magic word.
|
|
indexOut -= 3; // Rewind
|
|
}
|
|
} // else no header match. Resume at first mismatched byte.
|
|
bytesBuffered -= i;
|
|
}
|
|
break;
|
|
|
|
case MODE_DATA:
|
|
|
|
if(bytesRemaining > 0) {
|
|
if(bytesBuffered > 0) {
|
|
if (outPos < sizeof(leds)){
|
|
#ifdef CALIBRATE
|
|
if(outPos < 3)
|
|
ledsRaw[outPos++] = buffer[indexOut++];
|
|
else{
|
|
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
|
|
outPos++;
|
|
indexOut++;
|
|
}
|
|
#else
|
|
ledsRaw[outPos++] = buffer[indexOut++]; // Issue next byte
|
|
#endif
|
|
}
|
|
bytesBuffered--;
|
|
bytesRemaining--;
|
|
}
|
|
// If serial buffer is threatening to underrun, start
|
|
// introducing progressively longer pauses to allow more
|
|
// data to arrive (up to a point).
|
|
}
|
|
else {
|
|
// End of data -- issue latch:
|
|
startTime = micros();
|
|
mode = MODE_HEADER; // Begin next header search
|
|
FastLED.show();
|
|
}
|
|
} // end switch
|
|
} // end for(;;)
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
// Not used. See note in setup() function.
|
|
}
|