Adalight-FastLED_rgbwMod/Arduino/LEDstream_FastLED/LEDstream_FastLED.ino

233 lines
5.7 KiB
C++

/* LEDstream_FastLED
*
* Modified version of Adalight protocol that uses the FastLED
* library (http://fastled.io) for driving led strips.
*
* http://github.com/dmadison/Adalight-FastLED
* Last Updated: 2017-05-05
*/
// --- General Settings
static const uint8_t
Num_Leds = 80, // strip length
Led_Pin = 6, // Arduino data output pin
Brightness = 255; // maximum brightness
// --- FastLED Setings
#define LED_TYPE WS2812B // led strip type for FastLED
#define COLOR_ORDER GRB // color order for bitbang
// --- Serial Settings
static const unsigned long
SerialSpeed = 115200; // serial port speed, max available
static const uint16_t
SerialTimeout = 150; // time before LEDs are shut off if no data (in seconds)
// --- Optional Settings (uncomment to add)
//#define CLEAR_ON_START // LEDs are cleared on reset
//#define GROUND_PIN 10 // additional grounding pin (optional)
//#define CALIBRATE // sets all LEDs to the color of the first
// --- Debug Settings (uncomment to add)
//#define DEBUG_LED 13 // toggles the Arduino's built-in LED on header match
//#define DEBUG_FPS 8 // enables a pulse on LED latch
// --------------------------------------------------------------------
#include <FastLED.h>
CRGB leds[Num_Leds];
uint8_t * ledsRaw = (uint8_t *)leds;
// A 'magic word' (along with LED count & checksum) precedes each block
// of LED data; this assists the microcontroller in syncing up with the
// host-side software and properly issuing the latch (host I/O is
// likely buffered, making usleep() unreliable for latch). You may see
// an initial glitchy frame or two until the two come into alignment.
// The magic word can be whatever sequence you like, but each character
// should be unique, and frequent pixel values like 0 and 255 are
// avoided -- fewer false positives. The host software will need to
// generate a compatible header: immediately following the magic word
// are three bytes: a 16-bit count of the number of LEDs (high byte
// first) followed by a simple checksum value (high byte XOR low byte
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
// where 0 = off and 255 = max brightness.
static const uint8_t magic[] = {
'A','d','a'};
#define MAGICSIZE sizeof(magic)
// Check values are header byte # - 1, as they are indexed from 0
#define HICHECK (MAGICSIZE)
#define LOCHECK (MAGICSIZE + 1)
#define CHECKSUM (MAGICSIZE + 2)
#define MODE_HEADER 0
#define MODE_DATA 1
static uint8_t
mode = MODE_HEADER;
static int16_t
c;
static uint16_t
outPos;
static uint32_t
bytesRemaining;
static unsigned long
t,
lastByteTime,
lastAckTime;
// Debug macros initialized
#ifdef DEBUG_LED
#define ON 1
#define OFF 0
#define D_LED(x) do {digitalWrite(DEBUG_LED, x);} while(0)
#else
#define D_LED(x)
#endif
#ifdef DEBUG_FPS
#define D_FPS do {digitalWrite(DEBUG_FPS, HIGH); digitalWrite(DEBUG_FPS, LOW);} while (0)
#else
#define D_FPS
#endif
void setup(){
#ifdef GROUND_PIN
pinMode(GROUND_PIN, OUTPUT);
digitalWrite(GROUND_PIN, LOW);
#endif
#ifdef DEBUG_LED
pinMode(DEBUG_LED, OUTPUT);
digitalWrite(DEBUG_LED, LOW);
#endif
#ifdef DEBUG_FPS
pinMode(DEBUG_FPS, OUTPUT);
#endif
FastLED.addLeds<LED_TYPE, Led_Pin, COLOR_ORDER>(leds, Num_Leds);
FastLED.setBrightness(Brightness);
#ifdef CLEAR_ON_START
FastLED.show();
#endif
Serial.begin(SerialSpeed);
Serial.print("Ada\n"); // Send ACK string to host
lastByteTime = lastAckTime = millis(); // Set initial counters
}
void loop(){
adalight();
}
void adalight(){
t = millis(); // Save current time
// If there is new serial data
if((c = Serial.read()) >= 0){
lastByteTime = lastAckTime = t; // Reset timeout counters
switch(mode) {
case MODE_HEADER:
headerMode();
break;
case MODE_DATA:
dataMode();
break;
}
}
else {
// No new data
timeouts();
}
}
void headerMode(){
static uint8_t
headPos,
hi, lo, chk;
if(headPos < MAGICSIZE){
// Check if magic word matches
if(c == magic[headPos]) {headPos++;}
else {headPos = 0;}
}
else{
// Magic word matches! Now verify checksum
switch(headPos){
case HICHECK:
hi = c;
headPos++;
break;
case LOCHECK:
lo = c;
headPos++;
break;
case CHECKSUM:
chk = c;
if(chk == (hi ^ lo ^ 0x55)) {
// Checksum looks valid. Get 16-bit LED count, add 1
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
D_LED(ON);
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
outPos = 0;
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
mode = MODE_DATA; // Proceed to latch wait mode
}
headPos = 0; // Reset header position regardless of checksum result
break;
}
}
}
void dataMode(){
// If LED data is not full
if (outPos < sizeof(leds)){
dataSet();
}
bytesRemaining--;
if(bytesRemaining == 0) {
// End of data -- issue latch:
mode = MODE_HEADER; // Begin next header search
FastLED.show();
D_FPS;
D_LED(OFF);
}
}
void dataSet(){
#ifdef CALIBRATE
if(outPos < 3)
ledsRaw[outPos++] = c;
else{
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
outPos++;
}
#else
ledsRaw[outPos++] = c; // Issue next byte
#endif
}
void timeouts(){
// No data received. If this persists, send an ACK packet
// to host once every second to alert it to our presence.
if((t - lastAckTime) > 1000) {
Serial.print("Ada\n"); // Send ACK string to host
lastAckTime = t; // Reset counter
// If no data received for an extended time, turn off all LEDs.
if((t - lastByteTime) > SerialTimeout * 1000) {
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
FastLED.show();
lastByteTime = t; // Reset counter
}
}
}