bobbycar/logdata_visualization/analyze.py
2024-07-22 14:30:18 +02:00

47 lines
1.2 KiB
Python

import matplotlib.pyplot as plt
#import csv
import pandas as pd
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Analyzes fixed csv logs from bobbycar')
parser.add_argument('-i', '--input', type=argparse.FileType('r'), required=True, help="input csv log file")
args = parser.parse_args()
df = pd.read_csv(args.input.name)
x = df['timestamp']
x = [i-x[0] for i in x] #offset time by starttime
scattersize=1
scatteralpha=0.1
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
#plt.scatter(x,df['rpm_FrontL'], s=scattersize, alpha=scatteralpha, label="rpm_FrontL")
ax1.plot(x,np.array(df['vbat_Front']), c='b', alpha=0.5, label="vbat_Front")
ax1.plot(x,np.array(df['vbat_Rear']), c='r', alpha=0.5, label="vbat_Rear")
ax2.plot(x,np.array(df['rpm_FrontL']), c='g', alpha=0.5, label="rpm_FrontL")
#plt.plot(x,np.array(df['currentConsumed']), c='g', alpha=0.5, label="currentConsumed")
#plt.scatter(x,df['rpm_FrontR'], s=scattersize, alpha=scatteralpha, label="rpm_FrontR")
ax1.set_xlabel('timestamp')
#plt.ylabel('data')
ax1.set_ylabel('first axis')
ax2.set_ylabel('second axis')
#plt.title('')
ax1.legend(loc='upper left')
ax2.legend(loc='upper right')
plt.show()
exit()