bobbycar/controller_teensy/src/main.cpp

247 lines
8.8 KiB
C++

#include <Arduino.h>
// ########################## DEFINES ##########################
#define SERIAL_CONTROL_BAUD 115200 // [-] Baud rate for HoverSerial (used to communicate with the hoverboard)
#define SERIAL_BAUD 115200 // [-] Baud rate for built-in Serial (used for the Serial Monitor)
#define START_FRAME 0xABCD // [-] Start frme definition for reliable serial communication
#define SENDPERIOD 50 //ms. delay for sending speed and steer data to motor controller via serial
#define RECEIVEPERIOD 50 //ms
#define PIN_THROTTLE A0
const uint16_t calib_throttle_min = 350;
const uint16_t calib_throttle_max = 810;
unsigned long last_send = 0;
unsigned long last_receive = 0;
float avg_currentL=0;
float avg_currentR=0;
int16_t cmd_send=0;
// Global variables for serial communication
typedef struct{
uint8_t idx = 0; // Index for new data pointer
uint16_t bufStartFrame; // Buffer Start Frame
byte *p; // Pointer declaration for the new received data
byte incomingByte;
byte incomingBytePrev;
long lastValidDataSerial_time;
} SerialRead;
SerialRead SerialcomFront;
typedef struct{
uint16_t start;
int16_t speedLeft;
int16_t speedRight;
uint16_t checksum;
} SerialCommand;
SerialCommand CommandFront;
typedef struct{
uint16_t start;
int16_t cmd1;
int16_t cmd2;
int16_t speedL_meas;
int16_t speedR_meas;
int16_t batVoltage;
int16_t boardTemp;
int16_t curL_DC; //negative values are current drawn. positive values mean generated current
int16_t curR_DC;
uint16_t cmdLed;
uint16_t checksum;
} SerialFeedback;
SerialFeedback FeedbackFront;
SerialFeedback NewFeedbackFront;
#define CURRENT_FILTER_SIZE 100 //latency is about CURRENT_FILTER_SIZE/2*MEASURE_INTERVAL (measure interval is defined by hoverboard controller)
#define CURRENT_MEANVALUECOUNT 10 //0<= meanvaluecount < CURRENT_FILTER_SIZE/2. how many values will be used from sorted weight array from the center region. abour double this values reading are used
typedef struct{
int16_t curL_DC[CURRENT_FILTER_SIZE] = {0};
int16_t curR_DC[CURRENT_FILTER_SIZE] = {0};
uint8_t cur_pos=0;
int16_t cmdL=0;
int16_t cmdR=0;
} MotorParameter;
MotorParameter motorparamsFront;
void SendSerial(SerialCommand &scom, int16_t uSpeedLeft, int16_t uSpeedRight, HardwareSerial &SerialRef);
bool ReceiveSerial(SerialRead &sread, SerialFeedback &Feedback,SerialFeedback &NewFeedback, HardwareSerial &SerialRef);
int sort_desc(const void *cmp1, const void *cmp2);
float filterMedian(int16_t* values);
void SendSerial(SerialCommand &scom, int16_t uSpeedLeft, int16_t uSpeedRight, HardwareSerial &SerialRef)
{
// Create command
scom.start = (uint16_t)START_FRAME;
scom.speedLeft = (int16_t)uSpeedLeft;
scom.speedRight = (int16_t)uSpeedRight;
scom.checksum = (uint16_t)(scom.start ^ scom.speedLeft ^ scom.speedRight);
SerialRef.write((uint8_t *) &scom, sizeof(scom));
}
bool ReceiveSerial(SerialRead &sread, SerialFeedback &Feedback,SerialFeedback &NewFeedback, HardwareSerial &SerialRef)
{
bool _result=1;
// Check for new data availability in the Serial buffer
if ( SerialRef.available() ) {
sread.incomingByte = SerialRef.read(); // Read the incoming byte
sread.bufStartFrame = ((uint16_t)(sread.incomingByte) << 8) | sread.incomingBytePrev; // Construct the start frame
}
else {
return 0;
}
// If DEBUG_RX is defined print all incoming bytes
#ifdef DEBUG_RX
Serial.print(sread.incomingByte);
#endif
// Copy received data
if (sread.bufStartFrame == START_FRAME) { // Initialize if new data is detected
sread.p = (byte *)&NewFeedback;
*sread.p++ = sread.incomingBytePrev;
*sread.p++ = sread.incomingByte;
sread.idx = 2;
} else if (sread.idx >= 2 && sread.idx < sizeof(SerialFeedback)) { // Save the new received data
*sread.p++ = sread.incomingByte;
sread.idx++;
}
// Check if we reached the end of the package
if (sread.idx == sizeof(SerialFeedback)) {
uint16_t checksum;
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2
^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas ^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.curL_DC ^ NewFeedback.curR_DC ^ NewFeedback.cmdLed);
// Check validity of the new data
if (NewFeedback.start == START_FRAME && checksum == NewFeedback.checksum) {
// Copy the new data
memcpy(&Feedback, &NewFeedback, sizeof(SerialFeedback));
sread.lastValidDataSerial_time = millis();
} else {
_result=0;
}
sread.idx = 0; // Reset the index (it prevents to enter in this if condition in the next cycle)
}
/*
// Print data to built-in Serial
Serial.print("1: "); Serial.print(Feedback.cmd1);
Serial.print(" 2: "); Serial.print(Feedback.cmd2);
Serial.print(" 3: "); Serial.print(Feedback.speedR);
Serial.print(" 4: "); Serial.print(Feedback.speedL);
Serial.print(" 5: "); Serial.print(Feedback.speedR_meas);
Serial.print(" 6: "); Serial.print(Feedback.speedL_meas);
Serial.print(" 7: "); Serial.print(Feedback.batVoltage);
Serial.print(" 8: "); Serial.println(Feedback.boardTemp);
} else {
Serial.println("Non-valid data skipped");
}*/
// Update previous states
sread.incomingBytePrev = sread.incomingByte;
return _result; //new data was available
}
// ########################## SETUP ##########################
void setup()
{
Serial.begin(SERIAL_BAUD); //Debug and Program. A9=TX1, A10=RX1 (3v3 level)
Serial2.begin(SERIAL_CONTROL_BAUD); //control
Serial3.begin(SERIAL_CONTROL_BAUD); //control
pinMode(PIN_THROTTLE, INPUT_PULLUP);
}
unsigned long loopmillis;
// ########################## LOOP ##########################
void loop() {
loopmillis=millis(); //read millis for this cycle
bool newData2=ReceiveSerial(SerialcomFront,FeedbackFront, NewFeedbackFront, Serial2);
//Serial.print("fo="); Serial.println(count);
//count++;
if (newData2) {
motorparamsFront.cur_pos++;
motorparamsFront.cur_pos%=CURRENT_FILTER_SIZE;
motorparamsFront.curL_DC[motorparamsFront.cur_pos] = FeedbackFront.curL_DC;
motorparamsFront.curR_DC[motorparamsFront.cur_pos] = FeedbackFront.curR_DC;
}
if (loopmillis - last_send > SENDPERIOD) {
last_send=loopmillis;
uint16_t throttle_raw = analogRead(PIN_THROTTLE);
int16_t throttle_pos=max(0,min(1000,map(throttle_raw,calib_throttle_min,calib_throttle_max,0,1000))); //map and constrain
float freewheel_current=0.1;
float freewheel_break_factor=1000.0; //speed cmd units per amp per second. 1A over freewheel_current decreases cmd speed by this amount (in average)
float filtered_curFL=filterMedian(motorparamsFront.curL_DC)/50.0;
float filtered_curFR=filterMedian(motorparamsFront.curR_DC)/50.0;
float filtered_currentAll=(filtered_curFL+filtered_curFR)/2.0; //mean current of all motors
if (throttle_pos>=motorparamsFront.cmdR) { //accelerating
cmd_send = throttle_pos; //if throttle higher than apply throttle directly
}else{ //freewheeling or braking
if (-filtered_currentAll>freewheel_current) { //breaking current high enough
cmd_send-= max(0, (-filtered_currentAll-freewheel_current)*freewheel_break_factor*(SENDPERIOD/1000.0)); //how much current over freewheel current, multiplied by factor
}
cmd_send-=1; //reduce slowly anyways
cmd_send=constrain(cmd_send,0,1000);
}
//apply throttle command to all motors
motorparamsFront.cmdL=cmd_send;
motorparamsFront.cmdR=cmd_send;
SendSerial(CommandFront,motorparamsFront.cmdL,motorparamsFront.cmdR,Serial2);
Serial.print(cmd_send); Serial.print(", "); Serial.print(throttle_pos); Serial.print(", "); Serial.print(filtered_curFL*1000); Serial.print(", "); Serial.print(filtered_curFR*1000); Serial.print(", "); Serial.print(filtered_currentAll*1000); Serial.println();
}
}
int sort_desc(const void *cmp1, const void *cmp2) //compare function for qsort
{
float a = *((float *)cmp1);
float b = *((float *)cmp2);
return a > b ? -1 : (a < b ? 1 : 0);
}
float filterMedian(int16_t* values) {
float copied_values[CURRENT_FILTER_SIZE];
for(int i=0;i<CURRENT_FILTER_SIZE;i++) {
copied_values[i] = values[i]; //TODO: maybe some value filtering/selection here
}
float copied_values_length = sizeof(copied_values) / sizeof(copied_values[0]);
qsort(copied_values, copied_values_length, sizeof(copied_values[0]), sort_desc);
float mean=copied_values[CURRENT_FILTER_SIZE/2];
for (uint8_t i=1; i<=CURRENT_MEANVALUECOUNT;i++) {
mean+=copied_values[CURRENT_FILTER_SIZE/2-i]+copied_values[CURRENT_FILTER_SIZE/2+i]; //add two values around center
}
mean/=(1+CURRENT_MEANVALUECOUNT*2);
return mean;
}