2019-10-06 13:09:15 +00:00
/*
* This file is part of the hoverboard - firmware - hack project .
*
* Copyright ( C ) 2017 - 2018 Rene Hopf < renehopf @ mac . com >
* Copyright ( C ) 2017 - 2018 Nico Stute < crinq @ crinq . de >
* Copyright ( C ) 2017 - 2018 Niklas Fauth < niklas . fauth @ kit . fail >
2019-11-29 16:31:53 +00:00
* Copyright ( C ) 2019 - 2020 Emanuel FERU < aerdronix @ gmail . com >
2019-10-06 13:09:15 +00:00
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# include <stdlib.h> // for abs()
# include "stm32f1xx_hal.h"
# include "defines.h"
# include "setup.h"
# include "config.h"
# include "comms.h"
//#include "hd44780.h"
// Matlab includes and defines - from auto-code generation
// ###############################################################################
2019-10-20 11:31:47 +00:00
# include "BLDC_controller.h" /* Model's header file */
2019-10-06 13:09:15 +00:00
# include "rtwtypes.h"
2019-10-20 11:31:47 +00:00
RT_MODEL rtM_Left_ ; /* Real-time model */
RT_MODEL rtM_Right_ ; /* Real-time model */
2019-10-06 13:09:15 +00:00
RT_MODEL * const rtM_Left = & rtM_Left_ ;
RT_MODEL * const rtM_Right = & rtM_Right_ ;
P rtP_Left ; /* Block parameters (auto storage) */
DW rtDW_Left ; /* Observable states */
ExtU rtU_Left ; /* External inputs */
ExtY rtY_Left ; /* External outputs */
P rtP_Right ; /* Block parameters (auto storage) */
DW rtDW_Right ; /* Observable states */
ExtU rtU_Right ; /* External inputs */
ExtY rtY_Right ; /* External outputs */
extern uint8_t errCode_Left ; /* Global variable to handle Motor error codes */
extern uint8_t errCode_Right ; /* Global variable to handle Motor error codes */
// ###############################################################################
void SystemClock_Config ( void ) ;
void poweroff ( void ) ;
extern TIM_HandleTypeDef htim_left ;
extern TIM_HandleTypeDef htim_right ;
extern ADC_HandleTypeDef hadc1 ;
extern ADC_HandleTypeDef hadc2 ;
extern volatile adc_buf_t adc_buffer ;
//LCD_PCF8574_HandleTypeDef lcd;
extern I2C_HandleTypeDef hi2c2 ;
extern UART_HandleTypeDef huart2 ;
2019-11-29 16:31:53 +00:00
extern UART_HandleTypeDef huart3 ;
static UART_HandleTypeDef huart ;
2019-10-06 13:09:15 +00:00
2019-11-29 16:31:53 +00:00
# if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
2019-10-06 13:09:15 +00:00
typedef struct {
2019-11-29 16:31:53 +00:00
uint16_t start ;
int16_t steer ;
int16_t speed ;
uint16_t checksum ;
2019-10-06 13:09:15 +00:00
} Serialcommand ;
static volatile Serialcommand command ;
2019-11-29 16:31:53 +00:00
static int16_t timeoutCnt = 0 // Timeout counter for Rx Serial command
# endif
static uint8_t timeoutFlag = 0 ; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
2019-10-06 13:09:15 +00:00
2019-11-29 16:31:53 +00:00
# if defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3)
typedef struct {
uint16_t start ;
int16_t cmd1 ;
int16_t cmd2 ;
int16_t speedR ;
int16_t speedL ;
int16_t speedR_meas ;
int16_t speedL_meas ;
int16_t batVoltage ;
int16_t boardTemp ;
uint16_t checksum ;
} SerialFeedback ;
static SerialFeedback Feedback ;
# endif
static uint8_t serialSendCounter ; // serial send counter
# if defined(CONTROL_NUNCHUCK) || defined(CONTROL_PPM) || defined(CONTROL_ADC)
2019-10-06 13:09:15 +00:00
static uint8_t button1 , button2 ;
2019-11-29 16:31:53 +00:00
# endif
2019-10-06 13:09:15 +00:00
2019-11-29 16:31:53 +00:00
uint8_t ctrlModReq = CTRL_MOD_REQ ;
2019-10-31 21:07:52 +00:00
static int cmd1 ; // normalized input value. -1000 to 1000
static int cmd2 ; // normalized input value. -1000 to 1000
2019-10-20 11:31:47 +00:00
static int16_t steer ; // local variable for steering. -1000 to 1000
static int16_t speed ; // local variable for speed. -1000 to 1000
2019-10-27 17:21:04 +00:00
static int16_t steerFixdt ; // local fixed-point variable for steering low-pass filter
static int16_t speedFixdt ; // local fixed-point variable for speed low-pass filter
static int16_t steerRateFixdt ; // local fixed-point variable for steering rate limiter
static int16_t speedRateFixdt ; // local fixed-point variable for speed rate limiter
2019-10-06 13:09:15 +00:00
extern volatile int pwml ; // global variable for pwm left. -1000 to 1000
extern volatile int pwmr ; // global variable for pwm right. -1000 to 1000
extern uint8_t buzzerFreq ; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t buzzerPattern ; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t enable ; // global variable for motor enable
extern volatile uint32_t timeout ; // global variable for timeout
2019-10-20 11:31:47 +00:00
extern int16_t batVoltage ; // global variable for battery voltage
2019-10-06 13:09:15 +00:00
static uint32_t inactivity_timeout_counter ;
extern uint8_t nunchuck_data [ 6 ] ;
# ifdef CONTROL_PPM
extern volatile uint16_t ppm_captured_value [ PPM_NUM_CHANNELS + 1 ] ;
# endif
void poweroff ( void ) {
// if (abs(speed) < 20) { // wait for the speed to drop, then shut down -> this is commented out for SAFETY reasons
buzzerPattern = 0 ;
enable = 0 ;
2019-11-29 16:31:53 +00:00
consoleLog ( " -- Motors disabled -- \r \n " ) ;
2019-10-06 13:09:15 +00:00
for ( int i = 0 ; i < 8 ; i + + ) {
buzzerFreq = ( uint8_t ) i ;
HAL_Delay ( 100 ) ;
}
HAL_GPIO_WritePin ( OFF_PORT , OFF_PIN , 0 ) ;
while ( 1 ) { }
// }
}
int main ( void ) {
HAL_Init ( ) ;
__HAL_RCC_AFIO_CLK_ENABLE ( ) ;
HAL_NVIC_SetPriorityGrouping ( NVIC_PRIORITYGROUP_4 ) ;
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority ( MemoryManagement_IRQn , 0 , 0 ) ;
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority ( BusFault_IRQn , 0 , 0 ) ;
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority ( UsageFault_IRQn , 0 , 0 ) ;
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority ( SVCall_IRQn , 0 , 0 ) ;
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority ( DebugMonitor_IRQn , 0 , 0 ) ;
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority ( PendSV_IRQn , 0 , 0 ) ;
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority ( SysTick_IRQn , 0 , 0 ) ;
SystemClock_Config ( ) ;
__HAL_RCC_DMA1_CLK_DISABLE ( ) ;
MX_GPIO_Init ( ) ;
MX_TIM_Init ( ) ;
MX_ADC1_Init ( ) ;
MX_ADC2_Init ( ) ;
HAL_GPIO_WritePin ( OFF_PORT , OFF_PIN , 1 ) ;
HAL_ADC_Start ( & hadc1 ) ;
HAL_ADC_Start ( & hadc2 ) ;
// Matlab Init
// ###############################################################################
/* Set BLDC controller parameters */
rtP_Right = rtP_Left ; // Copy the Left motor parameters to the Right motor parameters
rtP_Left . b_selPhaABCurrMeas = 1 ; // Left motor measured current phases = {iA, iB} -> do NOT change
rtP_Left . z_ctrlTypSel = CTRL_TYP_SEL ;
rtP_Left . b_diagEna = DIAG_ENA ;
rtP_Left . b_fieldWeakEna = FIELD_WEAK_ENA ;
rtP_Left . i_max = I_MOT_MAX ;
rtP_Left . n_max = N_MOT_MAX ;
rtP_Right . b_selPhaABCurrMeas = 0 ; // Left motor measured current phases = {iB, iC} -> do NOT change
rtP_Right . z_ctrlTypSel = CTRL_TYP_SEL ;
rtP_Right . b_diagEna = DIAG_ENA ;
rtP_Right . b_fieldWeakEna = FIELD_WEAK_ENA ;
rtP_Right . i_max = I_MOT_MAX ;
rtP_Right . n_max = N_MOT_MAX ;
/* Pack LEFT motor data into RTM */
rtM_Left - > defaultParam = & rtP_Left ;
rtM_Left - > dwork = & rtDW_Left ;
rtM_Left - > inputs = & rtU_Left ;
rtM_Left - > outputs = & rtY_Left ;
/* Pack RIGHT motor data into RTM */
rtM_Right - > defaultParam = & rtP_Right ;
rtM_Right - > dwork = & rtDW_Right ;
rtM_Right - > inputs = & rtU_Right ;
rtM_Right - > outputs = & rtY_Right ;
/* Initialize BLDC controllers */
BLDC_controller_initialize ( rtM_Left ) ;
BLDC_controller_initialize ( rtM_Right ) ;
// ###############################################################################
for ( int i = 8 ; i > = 0 ; i - - ) {
buzzerFreq = ( uint8_t ) i ;
HAL_Delay ( 100 ) ;
}
buzzerFreq = 0 ;
HAL_GPIO_WritePin ( LED_PORT , LED_PIN , 1 ) ;
# ifdef CONTROL_PPM
PPM_Init ( ) ;
# endif
# ifdef CONTROL_NUNCHUCK
I2C_Init ( ) ;
Nunchuck_Init ( ) ;
# endif
2019-11-29 16:31:53 +00:00
# if defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2)
UART2_Init ( ) ;
huart = huart2 ;
# endif
# if defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3)
UART3_Init ( ) ;
huart = huart3 ;
# endif
# if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
HAL_UART_Receive_DMA ( & huart , ( uint8_t * ) & command , sizeof ( command ) ) ;
2019-10-06 13:09:15 +00:00
# endif
# ifdef DEBUG_I2C_LCD
I2C_Init ( ) ;
HAL_Delay ( 50 ) ;
lcd . pcf8574 . PCF_I2C_ADDRESS = 0x27 ;
lcd . pcf8574 . PCF_I2C_TIMEOUT = 5 ;
lcd . pcf8574 . i2c = hi2c2 ;
lcd . NUMBER_OF_LINES = NUMBER_OF_LINES_2 ;
lcd . type = TYPE0 ;
if ( LCD_Init ( & lcd ) ! = LCD_OK ) {
// error occured
//TODO while(1);
}
LCD_ClearDisplay ( & lcd ) ;
HAL_Delay ( 5 ) ;
LCD_SetLocation ( & lcd , 0 , 0 ) ;
LCD_WriteString ( & lcd , " Hover V2.0 " ) ;
LCD_SetLocation ( & lcd , 0 , 1 ) ;
LCD_WriteString ( & lcd , " Initializing... " ) ;
# endif
2019-10-20 11:31:47 +00:00
int16_t lastSpeedL = 0 , lastSpeedR = 0 ;
int16_t speedL = 0 , speedR = 0 ;
int16_t board_temp_adcFixdt = adc_buffer . temp < < 4 ; // Fixed-point filter output initialized with current ADC converted to fixed-point
int16_t board_temp_adcFilt = adc_buffer . temp ;
int16_t board_temp_deg_c ;
2019-10-06 13:09:15 +00:00
while ( 1 ) {
HAL_Delay ( DELAY_IN_MAIN_LOOP ) ; //delay in ms
# ifdef CONTROL_NUNCHUCK
Nunchuck_Read ( ) ;
cmd1 = CLAMP ( ( nunchuck_data [ 0 ] - 127 ) * 8 , - 1000 , 1000 ) ; // x - axis. Nunchuck joystick readings range 30 - 230
cmd2 = CLAMP ( ( nunchuck_data [ 1 ] - 128 ) * 8 , - 1000 , 1000 ) ; // y - axis
button1 = ( uint8_t ) nunchuck_data [ 5 ] & 1 ;
button2 = ( uint8_t ) ( nunchuck_data [ 5 ] > > 1 ) & 1 ;
# endif
# ifdef CONTROL_PPM
cmd1 = CLAMP ( ( ppm_captured_value [ 0 ] - 500 ) * 2 , - 1000 , 1000 ) ;
cmd2 = CLAMP ( ( ppm_captured_value [ 1 ] - 500 ) * 2 , - 1000 , 1000 ) ;
button1 = ppm_captured_value [ 5 ] > 500 ;
float scale = ppm_captured_value [ 2 ] / 1000.0f ;
# endif
# ifdef CONTROL_ADC
// ADC values range: 0-4095, see ADC-calibration in config.h
2019-10-27 17:21:04 +00:00
# ifdef ADC1_MID_POT
2019-11-03 08:54:37 +00:00
cmd1 = CLAMP ( ( adc_buffer . l_tx2 - ADC1_MID ) * 1000 / ( ADC1_MAX - ADC1_MID ) , 0 , 1000 )
- CLAMP ( ( ADC1_MID - adc_buffer . l_tx2 ) * 1000 / ( ADC1_MID - ADC1_MIN ) , 0 , 1000 ) ; // ADC1
2019-10-27 17:21:04 +00:00
# else
2019-11-03 08:54:37 +00:00
cmd1 = CLAMP ( ( adc_buffer . l_tx2 - ADC1_MIN ) * 1000 / ( ADC1_MAX - ADC1_MIN ) , 0 , 1000 ) ; // ADC1
2019-10-27 17:21:04 +00:00
# endif
# ifdef ADC2_MID_POT
2019-11-03 08:54:37 +00:00
cmd2 = CLAMP ( ( adc_buffer . l_rx2 - ADC2_MID ) * 1000 / ( ADC2_MAX - ADC2_MID ) , 0 , 1000 )
- CLAMP ( ( ADC2_MID - adc_buffer . l_rx2 ) * 1000 / ( ADC2_MID - ADC2_MIN ) , 0 , 1000 ) ; // ADC2
2019-10-27 17:21:04 +00:00
# else
2019-11-03 08:54:37 +00:00
cmd2 = CLAMP ( ( adc_buffer . l_rx2 - ADC2_MIN ) * 1000 / ( ADC2_MAX - ADC2_MIN ) , 0 , 1000 ) ; // ADC2
2019-10-27 17:21:04 +00:00
# endif
2019-10-06 13:09:15 +00:00
// use ADCs as button inputs:
button1 = ( uint8_t ) ( adc_buffer . l_tx2 > 2000 ) ; // ADC1
button2 = ( uint8_t ) ( adc_buffer . l_rx2 > 2000 ) ; // ADC2
timeout = 0 ;
# endif
2019-11-29 16:31:53 +00:00
# if defined CONTROL_SERIAL_USART2 || defined CONTROL_SERIAL_USART3
// Handle received data validity, timeout and fix out-of-sync if necessary
if ( command . start = = START_FRAME & & command . checksum = = ( command . start ^ command . steer ^ command . speed ) ) {
if ( timeoutFlag ) { // Check for previous timeout flag
if ( timeoutCnt - - < = 0 ) // Timeout de-qualification
timeoutFlag = 0 ; // Timeout flag cleared
} else {
cmd1 = CLAMP ( ( int16_t ) command . steer , - 1000 , 1000 ) ;
cmd2 = CLAMP ( ( int16_t ) command . speed , - 1000 , 1000 ) ;
command . start = 0xFFFF ; // Change the Start Frame for timeout detection in the next cycle
timeoutCnt = 0 ; // Reset the timeout counter
}
} else {
if ( timeoutCnt + + > = SERIAL_TIMEOUT ) { // Timeout qualification
timeoutFlag = 1 ; // Timeout detected
timeoutCnt = SERIAL_TIMEOUT ; // Limit timout counter value
}
// Check the received Start Frame. If it is NOT OK, most probably we are out-of-sync.
// Try to re-sync by reseting the DMA
if ( command . start ! = START_FRAME & & command . start ! = 0xFFFF ) {
HAL_UART_DMAStop ( & huart ) ;
HAL_UART_Receive_DMA ( & huart , ( uint8_t * ) & command , sizeof ( command ) ) ;
}
}
2019-10-06 13:09:15 +00:00
2019-11-29 16:31:53 +00:00
if ( timeoutFlag ) { // In case of timeout bring the system to a Safe State
ctrlModReq = 0 ; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way
cmd1 = 0 ;
cmd2 = 0 ;
} else {
ctrlModReq = CTRL_MOD_REQ ; // Follow the Mode request
}
2019-10-06 13:09:15 +00:00
timeout = 0 ;
2019-11-29 16:31:53 +00:00
2019-10-06 13:09:15 +00:00
# endif
// ####### MOTOR ENABLING: Only if the initial input is very small (for SAFETY) #######
if ( enable = = 0 & & ( cmd1 > - 50 & & cmd1 < 50 ) & & ( cmd2 > - 50 & & cmd2 < 50 ) ) {
2019-10-27 17:21:04 +00:00
buzzerPattern = 0 ;
buzzerFreq = 6 ; HAL_Delay ( 100 ) ; // make 2 beeps indicating the motor enable
buzzerFreq = 4 ; HAL_Delay ( 200 ) ;
buzzerFreq = 0 ;
enable = 1 ; // enable motors
2019-11-29 16:31:53 +00:00
consoleLog ( " -- Motors enabled -- \r \n " ) ;
2019-10-06 13:09:15 +00:00
}
// ####### LOW-PASS FILTER #######
2019-10-27 17:21:04 +00:00
rateLimiter16 ( cmd1 , RATE , & steerRateFixdt ) ;
rateLimiter16 ( cmd2 , RATE , & speedRateFixdt ) ;
filtLowPass16 ( steerRateFixdt > > 4 , FILTER , & steerFixdt ) ;
filtLowPass16 ( speedRateFixdt > > 4 , FILTER , & speedFixdt ) ;
2019-10-20 11:31:47 +00:00
steer = steerFixdt > > 4 ; // convert fixed-point to integer
speed = speedFixdt > > 4 ; // convert fixed-point to integer
2019-10-06 13:09:15 +00:00
// ####### MIXER #######
2019-10-20 11:31:47 +00:00
// speedR = CLAMP((int)(speed * SPEED_COEFFICIENT - steer * STEER_COEFFICIENT), -1000, 1000);
// speedL = CLAMP((int)(speed * SPEED_COEFFICIENT + steer * STEER_COEFFICIENT), -1000, 1000);
mixerFcn ( speedFixdt , steerFixdt , & speedR , & speedL ) ; // This function implements the equations above
2019-10-06 13:09:15 +00:00
2019-10-20 11:31:47 +00:00
// ####### SET OUTPUTS (if the target change is less than +/- 50) #######
2019-10-06 13:09:15 +00:00
if ( ( speedL > lastSpeedL - 50 & & speedL < lastSpeedL + 50 ) & & ( speedR > lastSpeedR - 50 & & speedR < lastSpeedR + 50 ) & & timeout < TIMEOUT ) {
2019-10-20 11:31:47 +00:00
# ifdef INVERT_R_DIRECTION
pwmr = speedR ;
# else
pwmr = - speedR ;
# endif
# ifdef INVERT_L_DIRECTION
pwml = - speedL ;
# else
pwml = speedL ;
# endif
2019-10-06 13:09:15 +00:00
}
lastSpeedL = speedL ;
lastSpeedR = speedR ;
2019-11-29 16:31:53 +00:00
// ####### CALC BOARD TEMPERATURE #######
filtLowPass16 ( adc_buffer . temp , TEMP_FILT_COEF , & board_temp_adcFixdt ) ;
board_temp_adcFilt = board_temp_adcFixdt > > 4 ; // convert fixed-point to integer
board_temp_deg_c = ( TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C ) * ( board_temp_adcFilt - TEMP_CAL_LOW_ADC ) / ( TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC ) + TEMP_CAL_LOW_DEG_C ;
serialSendCounter + + ; // Increment the counter
if ( serialSendCounter > 20 ) { // Send data every 100 ms = 20 * 5 ms, where 5 ms is approximately the main loop duration
serialSendCounter = 0 ; // Reset the counter
2019-10-06 13:09:15 +00:00
2019-11-29 16:31:53 +00:00
// ####### DEBUG SERIAL OUT #######
# if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
2019-10-06 13:09:15 +00:00
# ifdef CONTROL_ADC
2019-11-29 16:31:53 +00:00
setScopeChannel ( 0 , ( int16_t ) adc_buffer . l_tx2 ) ; // 1: ADC1
setScopeChannel ( 1 , ( int16_t ) adc_buffer . l_rx2 ) ; // 2: ADC2
2019-10-06 13:09:15 +00:00
# endif
2019-10-27 17:21:04 +00:00
setScopeChannel ( 2 , ( int16_t ) speedR ) ; // 1: output command: [-1000, 1000]
setScopeChannel ( 3 , ( int16_t ) speedL ) ; // 2: output command: [-1000, 1000]
2019-10-06 13:09:15 +00:00
setScopeChannel ( 4 , ( int16_t ) adc_buffer . batt1 ) ; // 5: for battery voltage calibration
2019-10-20 11:31:47 +00:00
setScopeChannel ( 5 , ( int16_t ) ( batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC ) ) ; // 6: for verifying battery voltage calibration
setScopeChannel ( 6 , ( int16_t ) board_temp_adcFilt ) ; // 7: for board temperature calibration
2019-10-06 13:09:15 +00:00
setScopeChannel ( 7 , ( int16_t ) board_temp_deg_c ) ; // 8: for verifying board temperature calibration
consoleScope ( ) ;
2019-11-29 16:31:53 +00:00
// ####### FEEDBACK SERIAL OUT #######
# elif defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3)
if ( UART_DMA_CHANNEL - > CNDTR = = 0 ) {
Feedback . start = ( uint16_t ) START_FRAME ;
Feedback . cmd1 = ( int16_t ) cmd1 ;
Feedback . cmd2 = ( int16_t ) cmd2 ;
Feedback . speedR = ( int16_t ) speedR ;
Feedback . speedL = ( int16_t ) speedL ;
Feedback . speedR_meas = ( int16_t ) rtY_Left . n_mot ;
Feedback . speedL_meas = ( int16_t ) rtY_Right . n_mot ;
Feedback . batVoltage = ( int16_t ) ( batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC ) ;
Feedback . boardTemp = ( int16_t ) board_temp_deg_c ;
Feedback . checksum = ( uint16_t ) ( Feedback . start ^ Feedback . cmd1 ^ Feedback . cmd2 ^ Feedback . speedR ^ Feedback . speedL
^ Feedback . speedR_meas ^ Feedback . speedL_meas ^ Feedback . batVoltage ^ Feedback . boardTemp ) ;
UART_DMA_CHANNEL - > CCR & = ~ DMA_CCR_EN ;
UART_DMA_CHANNEL - > CNDTR = sizeof ( Feedback ) ;
UART_DMA_CHANNEL - > CMAR = ( uint32_t ) & Feedback ;
UART_DMA_CHANNEL - > CCR | = DMA_CCR_EN ;
}
# endif
}
2019-10-06 13:09:15 +00:00
2019-10-20 11:31:47 +00:00
HAL_GPIO_TogglePin ( LED_PORT , LED_PIN ) ;
2019-10-06 13:09:15 +00:00
// ####### POWEROFF BY POWER-BUTTON #######
if ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) {
2019-10-27 17:21:04 +00:00
enable = 0 ; // disable motors
while ( HAL_GPIO_ReadPin ( BUTTON_PORT , BUTTON_PIN ) ) { } // wait until button is released
if ( __HAL_RCC_GET_FLAG ( RCC_FLAG_SFTRST ) ) { // do not power off after software reset (from a programmer/debugger)
__HAL_RCC_CLEAR_RESET_FLAGS ( ) ; // clear reset flags
} else {
poweroff ( ) ; // release power-latch
}
2019-10-06 13:09:15 +00:00
}
// ####### BEEP AND EMERGENCY POWEROFF #######
2019-10-20 11:31:47 +00:00
if ( ( TEMP_POWEROFF_ENABLE & & board_temp_deg_c > = TEMP_POWEROFF & & abs ( speed ) < 20 ) | | ( batVoltage < BAT_LOW_DEAD & & abs ( speed ) < 20 ) ) { // poweroff before mainboard burns OR low bat 3
2019-10-06 13:09:15 +00:00
poweroff ( ) ;
} else if ( TEMP_WARNING_ENABLE & & board_temp_deg_c > = TEMP_WARNING ) { // beep if mainboard gets hot
buzzerFreq = 4 ;
buzzerPattern = 1 ;
2019-10-20 11:31:47 +00:00
} else if ( batVoltage < BAT_LOW_LVL1 & & batVoltage > = BAT_LOW_LVL2 & & BAT_LOW_LVL1_ENABLE ) { // low bat 1: slow beep
2019-10-06 13:09:15 +00:00
buzzerFreq = 5 ;
buzzerPattern = 42 ;
2019-10-20 11:31:47 +00:00
} else if ( batVoltage < BAT_LOW_LVL2 & & batVoltage > = BAT_LOW_DEAD & & BAT_LOW_LVL2_ENABLE ) { // low bat 2: fast beep
2019-10-06 13:09:15 +00:00
buzzerFreq = 5 ;
buzzerPattern = 6 ;
2019-11-29 16:31:53 +00:00
} else if ( errCode_Left | | errCode_Right | | timeoutFlag ) { // beep in case of Motor error or serial timeout - fast beep
buzzerFreq = 12 ;
buzzerPattern = 1 ;
2019-10-06 13:09:15 +00:00
} else if ( BEEPS_BACKWARD & & speed < - 50 ) { // backward beep
buzzerFreq = 5 ;
buzzerPattern = 1 ;
} else { // do not beep
buzzerFreq = 0 ;
buzzerPattern = 0 ;
}
// ####### INACTIVITY TIMEOUT #######
if ( abs ( speedL ) > 50 | | abs ( speedR ) > 50 ) {
inactivity_timeout_counter = 0 ;
} else {
inactivity_timeout_counter + + ;
}
if ( inactivity_timeout_counter > ( INACTIVITY_TIMEOUT * 60 * 1000 ) / ( DELAY_IN_MAIN_LOOP + 1 ) ) { // rest of main loop needs maybe 1ms
poweroff ( ) ;
}
}
}
/** System Clock Configuration
*/
void SystemClock_Config ( void ) {
RCC_OscInitTypeDef RCC_OscInitStruct ;
RCC_ClkInitTypeDef RCC_ClkInitStruct ;
RCC_PeriphCLKInitTypeDef PeriphClkInit ;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct . OscillatorType = RCC_OSCILLATORTYPE_HSI ;
RCC_OscInitStruct . HSIState = RCC_HSI_ON ;
RCC_OscInitStruct . HSICalibrationValue = 16 ;
RCC_OscInitStruct . PLL . PLLState = RCC_PLL_ON ;
RCC_OscInitStruct . PLL . PLLSource = RCC_PLLSOURCE_HSI_DIV2 ;
RCC_OscInitStruct . PLL . PLLMUL = RCC_PLL_MUL16 ;
HAL_RCC_OscConfig ( & RCC_OscInitStruct ) ;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct . ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2 ;
RCC_ClkInitStruct . SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK ;
RCC_ClkInitStruct . AHBCLKDivider = RCC_SYSCLK_DIV1 ;
RCC_ClkInitStruct . APB1CLKDivider = RCC_HCLK_DIV2 ;
RCC_ClkInitStruct . APB2CLKDivider = RCC_HCLK_DIV1 ;
HAL_RCC_ClockConfig ( & RCC_ClkInitStruct , FLASH_LATENCY_2 ) ;
PeriphClkInit . PeriphClockSelection = RCC_PERIPHCLK_ADC ;
// PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz
PeriphClkInit . AdcClockSelection = RCC_ADCPCLK2_DIV4 ; // 16 MHz
HAL_RCCEx_PeriphCLKConfig ( & PeriphClkInit ) ;
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config ( HAL_RCC_GetHCLKFreq ( ) / 1000 ) ;
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig ( SYSTICK_CLKSOURCE_HCLK ) ;
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority ( SysTick_IRQn , 0 , 0 ) ;
}
2019-10-06 20:43:08 +00:00
// ===========================================================
/* Low pass filter fixed-point 16 bits: fixdt(1,16,4)
* Max : 2047.9375
* Min : - 2048
* Res : 0.0625
*
2019-10-20 11:31:47 +00:00
* Inputs : u = int16
* Outputs : y = fixdt ( 1 , 16 , 4 )
* Parameters : coef = fixdt ( 0 , 16 , 16 ) = [ 0 , 65535U ]
*
* Example :
2019-10-06 20:43:08 +00:00
* If coef = 0.8 ( in floating point ) , then coef = 0.8 * 2 ^ 16 = 52429 ( in fixed - point )
2019-10-20 11:31:47 +00:00
* filtLowPass16 ( u , 52429 , & y ) ;
* yint = y > > 4 ; // the integer output is the fixed-point ouput shifted by 4 bits
2019-10-06 20:43:08 +00:00
*/
2019-10-20 11:31:47 +00:00
void filtLowPass16 ( int16_t u , uint16_t coef , int16_t * y )
2019-10-06 20:43:08 +00:00
{
int32_t tmp ;
tmp = ( ( ( int16_t ) ( u < < 4 ) * coef ) > > 16 ) +
2019-10-20 11:31:47 +00:00
( ( ( int32_t ) ( 65535U - coef ) * ( * y ) ) > > 16 ) ;
2019-10-06 20:43:08 +00:00
// Overflow protection
2019-10-20 11:31:47 +00:00
tmp = CLAMP ( tmp , - 32768 , 32767 ) ;
2019-10-06 20:43:08 +00:00
2019-10-20 11:31:47 +00:00
* y = ( int16_t ) tmp ;
2019-10-06 20:43:08 +00:00
}
// ===========================================================
/* Low pass filter fixed-point 32 bits: fixdt(1,32,16)
* Max : 32767.99998474121
* Min : - 32768
* Res : 1.52587890625e-5
*
2019-10-20 11:31:47 +00:00
* Inputs : u = int32
* Outputs : y = fixdt ( 1 , 32 , 16 )
* Parameters : coef = fixdt ( 0 , 16 , 16 ) = [ 0 , 65535U ]
*
* Example :
2019-10-06 20:43:08 +00:00
* If coef = 0.8 ( in floating point ) , then coef = 0.8 * 2 ^ 16 = 52429 ( in fixed - point )
2019-10-20 11:31:47 +00:00
* filtLowPass16 ( u , 52429 , & y ) ;
* yint = y > > 16 ; // the integer output is the fixed-point ouput shifted by 16 bits
2019-10-06 20:43:08 +00:00
*/
2019-10-20 11:31:47 +00:00
void filtLowPass32 ( int32_t u , uint16_t coef , int32_t * y )
2019-10-06 20:43:08 +00:00
{
int32_t q0 ;
int32_t q1 ;
2019-10-20 11:31:47 +00:00
int32_t tmp ;
2019-10-06 20:43:08 +00:00
q0 = ( int32_t ) ( ( ( int64_t ) ( u < < 16 ) * coef ) > > 16 ) ;
2019-10-20 11:31:47 +00:00
q1 = ( int32_t ) ( ( ( int64_t ) ( 65535U - coef ) * ( * y ) ) > > 16 ) ;
2019-10-06 20:43:08 +00:00
// Overflow protection
if ( ( q0 < 0 ) & & ( q1 < MIN_int32_T - q0 ) ) {
2019-10-20 11:31:47 +00:00
tmp = MIN_int32_T ;
2019-10-06 20:43:08 +00:00
} else if ( ( q0 > 0 ) & & ( q1 > MAX_int32_T - q0 ) ) {
2019-10-20 11:31:47 +00:00
tmp = MAX_int32_T ;
2019-10-06 20:43:08 +00:00
} else {
2019-10-20 11:31:47 +00:00
tmp = q0 + q1 ;
2019-10-06 20:43:08 +00:00
}
2019-10-20 11:31:47 +00:00
* y = tmp ;
2019-10-06 20:43:08 +00:00
}
2019-10-20 11:31:47 +00:00
2019-10-06 20:43:08 +00:00
// ===========================================================
2019-10-20 11:31:47 +00:00
/* mixerFcn(rtu_speed, rtu_steer, &rty_speedR, &rty_speedL);
* Inputs : rtu_speed , rtu_steer = fixdt ( 1 , 16 , 4 )
* Outputs : rty_speedR , rty_speedL = int16_t
2019-10-27 17:21:04 +00:00
* Parameters : SPEED_COEFFICIENT , STEER_COEFFICIENT = fixdt ( 0 , 16 , 14 )
2019-10-20 11:31:47 +00:00
*/
void mixerFcn ( int16_t rtu_speed , int16_t rtu_steer , int16_t * rty_speedR , int16_t * rty_speedL )
{
int16_t prodSpeed ;
int16_t prodSteer ;
int32_t tmp ;
prodSpeed = ( int16_t ) ( ( rtu_speed * ( int16_t ) SPEED_COEFFICIENT ) > > 14 ) ;
prodSteer = ( int16_t ) ( ( rtu_steer * ( int16_t ) STEER_COEFFICIENT ) > > 14 ) ;
tmp = prodSpeed - prodSteer ;
tmp = CLAMP ( tmp , - 32768 , 32767 ) ; // Overflow protection
* rty_speedR = ( int16_t ) ( tmp > > 4 ) ; // Convert from fixed-point to int
* rty_speedR = CLAMP ( * rty_speedR , - 1000 , 1000 ) ;
tmp = prodSpeed + prodSteer ;
tmp = CLAMP ( tmp , - 32768 , 32767 ) ; // Overflow protection
* rty_speedL = ( int16_t ) ( tmp > > 4 ) ; // Convert from fixed-point to int
* rty_speedL = CLAMP ( * rty_speedL , - 1000 , 1000 ) ;
}
2019-10-27 17:21:04 +00:00
// ===========================================================
/* rateLimiter16(int16_t u, int16_t rate, int16_t *y);
* Inputs : u = int16
* Outputs : y = fixdt ( 1 , 16 , 4 )
* Parameters : rate = fixdt ( 1 , 16 , 4 ) = [ 0 , 32767 ] Do NOT make rate negative ( > 32767 )
*/
void rateLimiter16 ( int16_t u , int16_t rate , int16_t * y )
{
int16_t q0 ;
int16_t q1 ;
q0 = ( u < < 4 ) - * y ;
if ( q0 > rate ) {
q0 = rate ;
} else {
q1 = - rate ;
if ( q0 < q1 ) {
q0 = q1 ;
}
}
2019-10-31 21:07:52 +00:00
* y = q0 + * y ;
2019-10-27 17:21:04 +00:00
}
2019-10-20 11:31:47 +00:00
// ===========================================================