hoverboard-firmware-hack-fo.../Src/main.c

600 lines
26 KiB
C

/*
* This file is part of the hoverboard-firmware-hack project.
*
* Copyright (C) 2017-2018 Rene Hopf <renehopf@mac.com>
* Copyright (C) 2017-2018 Nico Stute <crinq@crinq.de>
* Copyright (C) 2017-2018 Niklas Fauth <niklas.fauth@kit.fail>
* Copyright (C) 2019-2020 Emanuel FERU <aerdronix@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h> // for abs()
#include "stm32f1xx_hal.h"
#include "defines.h"
#include "setup.h"
#include "config.h"
#include "util.h"
#include "BLDC_controller.h" /* BLDC's header file */
#include "rtwtypes.h"
#include "comms.h"
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
#include "hd44780.h"
#endif
void SystemClock_Config(void);
//------------------------------------------------------------------------
// Global variables set externally
//------------------------------------------------------------------------
extern TIM_HandleTypeDef htim_left;
extern TIM_HandleTypeDef htim_right;
extern ADC_HandleTypeDef hadc1;
extern ADC_HandleTypeDef hadc2;
extern volatile adc_buf_t adc_buffer;
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
extern LCD_PCF8574_HandleTypeDef lcd;
extern uint8_t LCDerrorFlag;
#endif
extern UART_HandleTypeDef huart2;
extern UART_HandleTypeDef huart3;
volatile uint8_t uart_buf[200];
// Matlab defines - from auto-code generation
//---------------
extern P rtP_Left; /* Block parameters (auto storage) */
extern P rtP_Right; /* Block parameters (auto storage) */
extern ExtY rtY_Left; /* External outputs */
extern ExtY rtY_Right; /* External outputs */
//---------------
extern uint8_t inIdx; // input index used for dual-inputs
extern uint8_t inIdx_prev;
extern InputStruct input1[]; // input structure
extern InputStruct input2[]; // input structure
extern int16_t speedAvg; // Average measured speed
extern int16_t speedAvgAbs; // Average measured speed in absolute
extern volatile uint32_t timeoutCntGen; // Timeout counter for the General timeout (PPM, PWM, Nunchuk)
extern volatile uint8_t timeoutFlgGen; // Timeout Flag for the General timeout (PPM, PWM, Nunchuk)
extern uint8_t timeoutFlgADC; // Timeout Flag for for ADC Protection: 0 = OK, 1 = Problem detected (line disconnected or wrong ADC data)
extern uint8_t timeoutFlgSerial; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
extern volatile int pwml; // global variable for pwm left. -1000 to 1000
extern volatile int pwmr; // global variable for pwm right. -1000 to 1000
extern uint8_t enable; // global variable for motor enable
extern int16_t batVoltage; // global variable for battery voltage
extern int16_t curL_DC; // global variable for left motor current. to get current in Ampere divide by A2BIT_CONV
extern int16_t curR_DC; // global variable for right motor current
extern int16_t curL_phaA;
extern int16_t curL_phaB;
extern int16_t curR_phaA;
extern int16_t curR_phaB;
#if defined(SIDEBOARD_SERIAL_USART2)
extern SerialSideboard Sideboard_L;
#endif
#if defined(SIDEBOARD_SERIAL_USART3)
extern SerialSideboard Sideboard_R;
#endif
#if (defined(CONTROL_PPM_LEFT) && defined(DEBUG_SERIAL_USART3)) || (defined(CONTROL_PPM_RIGHT) && defined(DEBUG_SERIAL_USART2))
extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1];
#endif
#if (defined(CONTROL_PWM_LEFT) && defined(DEBUG_SERIAL_USART3)) || (defined(CONTROL_PWM_RIGHT) && defined(DEBUG_SERIAL_USART2))
extern volatile uint16_t pwm_captured_ch1_value;
extern volatile uint16_t pwm_captured_ch2_value;
#endif
//------------------------------------------------------------------------
// Global variables set here in main.c
//------------------------------------------------------------------------
uint8_t backwardDrive;
volatile uint32_t main_loop_counter;
//------------------------------------------------------------------------
// Local variables
//------------------------------------------------------------------------
#if defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3)
typedef struct{
uint16_t start;
int16_t cmd1;
int16_t cmd2;
int16_t speedL_meas;
int16_t speedR_meas;
int16_t batVoltage;
int16_t boardTemp;
int16_t curL_DC;
int16_t curR_DC;
uint16_t cmdLed;
uint16_t checksum;
} SerialFeedback;
static SerialFeedback Feedback;
#endif
#if defined(FEEDBACK_SERIAL_USART2)
static uint8_t sideboard_leds_L;
#endif
#if defined(FEEDBACK_SERIAL_USART3)
static uint8_t sideboard_leds_R;
#endif
#ifdef VARIANT_TRANSPOTTER
extern uint8_t nunchuk_connected;
extern float setDistance;
static uint8_t checkRemote = 0;
static uint16_t distance;
static float steering;
static int distanceErr;
static int lastDistance = 0;
static uint16_t transpotter_counter = 0;
#endif
static int16_t speed; // local variable for speed. -1000 to 1000
#ifndef VARIANT_TRANSPOTTER
//static int16_t steer; // local variable for steering. -1000 to 1000
//static int16_t steerRateFixdt; // local fixed-point variable for steering rate limiter
//static int16_t speedRateFixdt; // local fixed-point variable for speed rate limiter
static int16_t speedLeftRateFixdt; // local fixed-point variable for steering rate limiter
static int16_t speedRightRateFixdt; // local fixed-point variable for speed rate limiter
//static int32_t steerFixdt; // local fixed-point variable for steering low-pass filter
//static int32_t speedFixdt; // local fixed-point variable for speed low-pass filter
static int32_t speedLeftFixdt; // local fixed-point variable for speedLeft low-pass filter
static int32_t speedRightFixdt; // local fixed-point variable for speedRight low-pass filter
#endif
static uint32_t inactivity_timeout_counter;
static MultipleTap MultipleTapBrake; // define multiple tap functionality for the Brake pedal
int main(void) {
HAL_Init();
__HAL_RCC_AFIO_CLK_ENABLE();
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0);
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0);
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0);
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0);
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0);
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
SystemClock_Config();
__HAL_RCC_DMA1_CLK_DISABLE();
MX_GPIO_Init();
MX_TIM_Init();
MX_ADC1_Init();
MX_ADC2_Init();
BLDC_Init(); // BLDC Controller Init
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, GPIO_PIN_SET); // Activate Latch
Input_Lim_Init(); // Input Limitations Init
Input_Init(); // Input Init
HAL_ADC_Start(&hadc1);
HAL_ADC_Start(&hadc2);
poweronMelody();
HAL_GPIO_WritePin(LED_PORT, LED_PIN, GPIO_PIN_SET);
int16_t cmdL = 0, cmdR = 0;
int16_t cmdL_prev = 0, cmdR_prev = 0;
int16_t speedL = 0, speedR = 0;
int32_t board_temp_adcFixdt = adc_buffer.temp << 16; // Fixed-point filter output initialized with current ADC converted to fixed-point
int16_t board_temp_adcFilt = adc_buffer.temp;
int16_t board_temp_deg_c;
// Loop until button is released
while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) { HAL_Delay(10); }
while(1) {
HAL_Delay(DELAY_IN_MAIN_LOOP); // delay in ms
readCommand(); // Read Command: input1[inIdx].cmd, input2[inIdx].cmd
calcAvgSpeed(); // Calculate average measured speed: speedAvg, speedAvgAbs
#ifndef VARIANT_TRANSPOTTER
// ####### MOTOR ENABLING: Only if the initial input is very small (for SAFETY) #######
if (enable == 0 && (!rtY_Left.z_errCode && !rtY_Right.z_errCode) && (input1[inIdx].cmd > -50 && input1[inIdx].cmd < 50) && (input2[inIdx].cmd > -50 && input2[inIdx].cmd < 50)){
beepShort(6); // make 2 beeps indicating the motor enable
beepShort(4); HAL_Delay(100);
//steerFixdt = speedFixdt = 0; // reset filters
speedLeftFixdt = speedRightFixdt = 0; //reset filters
enable = 1; // enable motors
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
printf("-- Motors enabled --\r\n");
#endif
}
// ####### VARIANT_HOVERCAR #######
#if defined(VARIANT_HOVERCAR) || defined(VARIANT_SKATEBOARD) || defined(ELECTRIC_BRAKE_ENABLE)
uint16_t speedBlend; // Calculate speed Blend, a number between [0, 1] in fixdt(0,16,15)
speedBlend = (uint16_t)(((CLAMP(speedAvgAbs,10,60) - 10) << 15) / 50); // speedBlend [0,1] is within [10 rpm, 60rpm]
#endif
#ifdef STANDSTILL_HOLD_ENABLE
standstillHold(); // Apply Standstill Hold functionality. Only available and makes sense for VOLTAGE or TORQUE Mode
#endif
#ifdef VARIANT_HOVERCAR
if (inIdx == CONTROL_ADC) { // Only use use implementation below if pedals are in use (ADC input)
if (speedAvgAbs < 60) { // Check if Hovercar is physically close to standstill to enable Double tap detection on Brake pedal for Reverse functionality
multipleTapDet(input1[inIdx].cmd, HAL_GetTick(), &MultipleTapBrake); // Brake pedal in this case is "input1" variable
}
if (input1[inIdx].cmd > 30) { // If Brake pedal (input1) is pressed, bring to 0 also the Throttle pedal (input2) to avoid "Double pedal" driving
input2[inIdx].cmd = (int16_t)((input2[inIdx].cmd * speedBlend) >> 15);
cruiseControl((uint8_t)rtP_Left.b_cruiseCtrlEna); // Cruise control deactivated by Brake pedal if it was active
}
}
#endif
#ifdef ELECTRIC_BRAKE_ENABLE
electricBrake(speedBlend, MultipleTapBrake.b_multipleTap); // Apply Electric Brake. Only available and makes sense for TORQUE Mode
#endif
#ifdef VARIANT_HOVERCAR
if (inIdx == CONTROL_ADC) { // Only use use implementation below if pedals are in use (ADC input)
if (speedAvg > 0) { // Make sure the Brake pedal is opposite to the direction of motion AND it goes to 0 as we reach standstill (to avoid Reverse driving by Brake pedal)
input1[inIdx].cmd = (int16_t)((-input1[inIdx].cmd * speedBlend) >> 15);
} else {
input1[inIdx].cmd = (int16_t)(( input1[inIdx].cmd * speedBlend) >> 15);
}
}
#endif
#ifdef VARIANT_SKATEBOARD
if (input2[inIdx].cmd < 0) { // When Throttle is negative, it acts as brake. This condition is to make sure it goes to 0 as we reach standstill (to avoid Reverse driving)
if (speedAvg > 0) { // Make sure the braking is opposite to the direction of motion
input2[inIdx].cmd = (int16_t)(( input2[inIdx].cmd * speedBlend) >> 15);
} else {
input2[inIdx].cmd = (int16_t)((-input2[inIdx].cmd * speedBlend) >> 15);
}
}
#endif
// ####### LOW-PASS FILTER #######
/*
rateLimiter16(input1[inIdx].cmd , RATE, &steerRateFixdt);
rateLimiter16(input2[inIdx].cmd , RATE, &speedRateFixdt);
filtLowPass32(steerRateFixdt >> 4, FILTER, &steerFixdt);
filtLowPass32(speedRateFixdt >> 4, FILTER, &speedFixdt);
steer = (int16_t)(steerFixdt >> 16); // convert fixed-point to integer
speed = (int16_t)(speedFixdt >> 16); // convert fixed-point to integer
*/
rateLimiter16(input1[inIdx].cmd , RATE, &speedLeftRateFixdt);
rateLimiter16(input2[inIdx].cmd , RATE, &speedRightRateFixdt);
filtLowPass32(speedLeftRateFixdt >> 4, FILTER, &speedLeftFixdt);
filtLowPass32(speedRightRateFixdt >> 4, FILTER, &speedRightFixdt);
speedL = (int16_t)(speedLeftFixdt >> 16); // convert fixed-point to integer
speedR = (int16_t)(speedRightFixdt >> 16); // convert fixed-point to integer
// ####### VARIANT_HOVERCAR #######
#ifdef VARIANT_HOVERCAR
if (inIdx == CONTROL_ADC) { // Only use use implementation below if pedals are in use (ADC input)
if (!MultipleTapBrake.b_multipleTap) { // Check driving direction
speed = steer + speed; // Forward driving: in this case steer = Brake, speed = Throttle
} else {
speed = steer - speed; // Reverse driving: in this case steer = Brake, speed = Throttle
}
steer = 0; // Do not apply steering to avoid side effects if STEER_COEFFICIENT is NOT 0
}
#endif
// ####### MIXER #######
// cmdR = CLAMP((int)(speed * SPEED_COEFFICIENT - steer * STEER_COEFFICIENT), INPUT_MIN, INPUT_MAX);
// cmdL = CLAMP((int)(speed * SPEED_COEFFICIENT + steer * STEER_COEFFICIENT), INPUT_MIN, INPUT_MAX);
//mixerFcn(speed << 4, steer << 4, &cmdR, &cmdL); // This function implements the equations above
int16_t _temp;
mixerFcn(speedL << 4, ((int16_t)0) << 4, &cmdL, &_temp); // This function implements the equations above
mixerFcn(speedR << 4, ((int16_t)0) << 4, &cmdR, &_temp); // This function implements the equations above
// ####### SET OUTPUTS (if the target change is less than +/- 100) #######
if ((cmdL > cmdL_prev-100 && cmdL < cmdL_prev+100) && (cmdR > cmdR_prev-100 && cmdR < cmdR_prev+100)) {
#ifdef INVERT_R_DIRECTION
pwmr = cmdR;
#else
pwmr = -cmdR;
#endif
#ifdef INVERT_L_DIRECTION
pwml = -cmdL;
#else
pwml = cmdL;
#endif
}
#endif
#ifdef VARIANT_TRANSPOTTER
distance = CLAMP(input1[inIdx].cmd - 180, 0, 4095);
steering = (input2[inIdx].cmd - 2048) / 2048.0;
distanceErr = distance - (int)(setDistance * 1345);
if (nunchuk_connected == 0) {
cmdL = cmdL * 0.8f + (CLAMP(distanceErr + (steering*((float)MAX(ABS(distanceErr), 50)) * ROT_P), -850, 850) * -0.2f);
cmdR = cmdR * 0.8f + (CLAMP(distanceErr - (steering*((float)MAX(ABS(distanceErr), 50)) * ROT_P), -850, 850) * -0.2f);
if ((cmdL < cmdL_prev + 50 && cmdL > cmdL_prev - 50) && (cmdR < cmdR_prev + 50 && cmdR > cmdR_prev - 50)) {
if (distanceErr > 0) {
enable = 1;
}
if (distanceErr > -300) {
#ifdef INVERT_R_DIRECTION
pwmr = cmdR;
#else
pwmr = -cmdR;
#endif
#ifdef INVERT_L_DIRECTION
pwml = -cmdL;
#else
pwml = cmdL;
#endif
if (checkRemote) {
if (!HAL_GPIO_ReadPin(LED_PORT, LED_PIN)) {
//enable = 1;
} else {
enable = 0;
}
}
} else {
enable = 0;
}
}
timeoutCntGen = 0;
timeoutFlgGen = 0;
}
if (timeoutFlgGen) {
pwml = 0;
pwmr = 0;
enable = 0;
#ifdef SUPPORT_LCD
LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Len:");
LCD_SetLocation(&lcd, 8, 0); LCD_WriteString(&lcd, "m(");
LCD_SetLocation(&lcd, 14, 0); LCD_WriteString(&lcd, "m)");
#endif
HAL_Delay(1000);
nunchuk_connected = 0;
}
if ((distance / 1345.0) - setDistance > 0.5 && (lastDistance / 1345.0) - setDistance > 0.5) { // Error, robot too far away!
enable = 0;
beepLong(5);
#ifdef SUPPORT_LCD
LCD_ClearDisplay(&lcd);
HAL_Delay(5);
LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Emergency Off!");
LCD_SetLocation(&lcd, 0, 1); LCD_WriteString(&lcd, "Keeper too fast.");
#endif
poweroff();
}
#ifdef SUPPORT_NUNCHUK
if (transpotter_counter % 500 == 0) {
if (nunchuk_connected == 0 && enable == 0) {
if (Nunchuk_Ping()) {
HAL_Delay(500);
Nunchuk_Init();
#ifdef SUPPORT_LCD
LCD_SetLocation(&lcd, 0, 0); LCD_WriteString(&lcd, "Nunchuk Control");
#endif
timeoutCntGen = 0;
timeoutFlgGen = 0;
HAL_Delay(1000);
nunchuk_connected = 1;
}
}
}
#endif
#ifdef SUPPORT_LCD
if (transpotter_counter % 100 == 0) {
if (LCDerrorFlag == 1 && enable == 0) {
} else {
if (nunchuk_connected == 0) {
LCD_SetLocation(&lcd, 4, 0); LCD_WriteFloat(&lcd,distance/1345.0,2);
LCD_SetLocation(&lcd, 10, 0); LCD_WriteFloat(&lcd,setDistance,2);
}
LCD_SetLocation(&lcd, 4, 1); LCD_WriteFloat(&lcd,batVoltage, 1);
// LCD_SetLocation(&lcd, 11, 1); LCD_WriteFloat(&lcd,MAX(ABS(currentR), ABS(currentL)),2);
}
}
#endif
transpotter_counter++;
#endif
// ####### SIDEBOARDS HANDLING #######
#if defined(SIDEBOARD_SERIAL_USART2) && defined(FEEDBACK_SERIAL_USART2)
sideboardLeds(&sideboard_leds_L);
sideboardSensors((uint8_t)Sideboard_L.sensors);
#endif
#if defined(SIDEBOARD_SERIAL_USART3) && defined(FEEDBACK_SERIAL_USART3)
sideboardLeds(&sideboard_leds_R);
sideboardSensors((uint8_t)Sideboard_R.sensors);
#endif
// ####### CALC BOARD TEMPERATURE #######
filtLowPass32(adc_buffer.temp, TEMP_FILT_COEF, &board_temp_adcFixdt);
board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 16); // convert fixed-point to integer
board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C;
// ####### DEBUG SERIAL OUT #######
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
if (main_loop_counter % 25 == 0) { // Send data periodically every 125 ms
#if defined(DEBUG_SERIAL_PROTOCOL)
process_debug();
#else
printf("in1:%i in2:%i cmdL:%i cmdR:%i BatADC:%i BatV:%i TempADC:%i Temp:%i\r\n",
input1[inIdx].raw, // 1: INPUT1
input2[inIdx].raw, // 2: INPUT2
cmdL, // 3: output command: [-1000, 1000]
cmdR, // 4: output command: [-1000, 1000]
adc_buffer.batt1, // 5: for battery voltage calibration
batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC, // 6: for verifying battery voltage calibration
board_temp_adcFilt, // 7: for board temperature calibration
board_temp_deg_c); // 8: for verifying board temperature calibration
#endif
}
#endif
// ####### FEEDBACK SERIAL OUT #######
#if defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3)
if (main_loop_counter % 2 == 0) { // Send data periodically every 10 ms
Feedback.start = (uint16_t)SERIAL_START_FRAME;
Feedback.cmd1 = (int16_t)input1[inIdx].cmd;
Feedback.cmd2 = (int16_t)input2[inIdx].cmd;
Feedback.speedR_meas = (int16_t)rtY_Right.n_mot;
Feedback.speedL_meas = (int16_t)rtY_Left.n_mot;
Feedback.batVoltage = (int16_t)(batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC);
Feedback.boardTemp = (int16_t)board_temp_deg_c;
Feedback.curL_DC = (int16_t)curL_DC; //divide by A2BIT_CONV to get current in amperes
Feedback.curR_DC = (int16_t)curR_DC;
//Feedback.curL_DC = (int16_t)curL_phaA;
//Feedback.curR_DC = (int16_t)curL_phaB;
#if defined(FEEDBACK_SERIAL_USART2)
if(__HAL_DMA_GET_COUNTER(huart2.hdmatx) == 0) {
Feedback.cmdLed = (uint16_t)sideboard_leds_L;
Feedback.checksum = (uint16_t)(Feedback.start ^ Feedback.cmd1 ^ Feedback.cmd2 ^ Feedback.speedR_meas ^ Feedback.speedL_meas
^ Feedback.batVoltage ^ Feedback.boardTemp ^ Feedback.curL_DC ^ Feedback.curR_DC ^ Feedback.cmdLed);
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Feedback, sizeof(Feedback));
}
#endif
#if defined(FEEDBACK_SERIAL_USART3)
if(__HAL_DMA_GET_COUNTER(huart3.hdmatx) == 0) {
Feedback.cmdLed = (uint16_t)sideboard_leds_R;
Feedback.checksum = (uint16_t)(Feedback.start ^ Feedback.cmd1 ^ Feedback.cmd2 ^ Feedback.speedR_meas ^ Feedback.speedL_meas
^ Feedback.batVoltage ^ Feedback.boardTemp ^ Feedback.curL_DC ^ Feedback.curR_DC ^ Feedback.cmdLed);
HAL_UART_Transmit_DMA(&huart3, (uint8_t *)&Feedback, sizeof(Feedback));
}
#endif
}
#endif
// ####### POWEROFF BY POWER-BUTTON #######
poweroffPressCheck();
// ####### BEEP AND EMERGENCY POWEROFF #######
if ((TEMP_POWEROFF_ENABLE && board_temp_deg_c >= TEMP_POWEROFF && speedAvgAbs < 20) || (batVoltage < BAT_DEAD && speedAvgAbs < 20)) { // poweroff before mainboard burns OR low bat 3
poweroff();
} else if (rtY_Left.z_errCode || rtY_Right.z_errCode) { // 1 beep (low pitch): Motor error, disable motors
enable = 0;
beepCount(1, 24, 1);
} else if (timeoutFlgADC) { // 2 beeps (low pitch): ADC timeout
beepCount(2, 24, 1);
} else if (timeoutFlgSerial) { // 3 beeps (low pitch): Serial timeout
beepCount(3, 24, 1);
} else if (timeoutFlgGen) { // 4 beeps (low pitch): General timeout (PPM, PWM, Nunchuk)
beepCount(4, 24, 1);
} else if (TEMP_WARNING_ENABLE && board_temp_deg_c >= TEMP_WARNING) { // 5 beeps (low pitch): Mainboard temperature warning
beepCount(5, 24, 1);
} else if (BAT_LVL1_ENABLE && batVoltage < BAT_LVL1) { // 1 beep fast (medium pitch): Low bat 1
beepCount(0, 10, 6);
} else if (BAT_LVL2_ENABLE && batVoltage < BAT_LVL2) { // 1 beep slow (medium pitch): Low bat 2
beepCount(0, 10, 30);
} else if (BEEPS_BACKWARD && ((speed < -50 && speedAvg < 0) || MultipleTapBrake.b_multipleTap)) { // 1 beep fast (high pitch): Backward spinning motors
beepCount(0, 5, 1);
backwardDrive = 1;
} else { // do not beep
beepCount(0, 0, 0);
backwardDrive = 0;
}
// ####### INACTIVITY TIMEOUT #######
if (abs(cmdL) > 50 || abs(cmdR) > 50) {
inactivity_timeout_counter = 0;
} else {
inactivity_timeout_counter++;
}
if (inactivity_timeout_counter > (INACTIVITY_TIMEOUT * 60 * 1000) / (DELAY_IN_MAIN_LOOP + 1)) { // rest of main loop needs maybe 1ms
poweroff();
}
// HAL_GPIO_TogglePin(LED_PORT, LED_PIN); // This is to measure the main() loop duration with an oscilloscope connected to LED_PIN
// Update states
inIdx_prev = inIdx;
cmdL_prev = cmdL;
cmdR_prev = cmdR;
main_loop_counter++;
}
}
// ===========================================================
/** System Clock Configuration
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
// PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}