disarm only at timeout

This commit is contained in:
interfisch 2019-06-01 18:51:16 +02:00
parent 26353508aa
commit 886ecc5b7a
1 changed files with 174 additions and 156 deletions

View File

@ -8,19 +8,19 @@
//set boot0 back to 0 to run program on powerup //set boot0 back to 0 to run program on powerup
//#define DEBUG //#define DEBUG
uint8_t error=0; uint8_t error = 0;
#define IMU_NO_CHANGE 2 //IMU values did not change for too long #define IMU_NO_CHANGE 2 //IMU values did not change for too long
uint8_t imu_no_change_counter=0; uint8_t imu_no_change_counter = 0;
#define PIN_LED PC13 #define PIN_LED PC13
#define SENDPERIOD 20 //ms #define SENDPERIOD 20 //ms
#define CONTROLUPDATEPERIOD 10 #define CONTROLUPDATEPERIOD 10
long last_controlupdate=0; long last_controlupdate = 0;
#define IMUUPDATEPERIOD 10 //ms #define IMUUPDATEPERIOD 10 //ms
long last_imuupdated=0; long last_imuupdated = 0;
#define MAX_YAWCHANGE 90 //in degrees, if exceeded in one update intervall error will be triggered #define MAX_YAWCHANGE 90 //in degrees, if exceeded in one update intervall error will be triggered
@ -28,14 +28,14 @@ long last_imuupdated=0;
//https://github.com/fookingthg/GY85 //https://github.com/fookingthg/GY85
//ITG3200 and ADXL345 from https://github.com/jrowberg/i2cdevlib/tree/master/Arduino //ITG3200 and ADXL345 from https://github.com/jrowberg/i2cdevlib/tree/master/Arduino
//https://github.com/mechasolution/Mecha_QMC5883L //because QMC5883 on GY85 instead of HMC5883, source: https://circuitdigest.com/microcontroller-projects/digital-compass-with-arduino-and-hmc5883l-magnetometer //https://github.com/mechasolution/Mecha_QMC5883L //because QMC5883 on GY85 instead of HMC5883, source: https://circuitdigest.com/microcontroller-projects/digital-compass-with-arduino-and-hmc5883l-magnetometer
//in qmc5883L library read values changed from uint16_t to int16_t //in qmc5883L library read values changed from uint16_t to int16_t
IMUGY85 imu; IMUGY85 imu;
double ax, ay, az, gx, gy, gz, roll, pitch, yaw,mx,my,mz,ma; double ax, ay, az, gx, gy, gz, roll, pitch, yaw, mx, my, mz, ma;
double old_ax, old_ay, old_az, old_gx, old_gy, old_gz, old_roll, old_pitch, old_yaw,old_mx,old_my,old_mz,old_ma; double old_ax, old_ay, old_az, old_gx, old_gy, old_gz, old_roll, old_pitch, old_yaw, old_mx, old_my, old_mz, old_ma;
double setYaw=0; double setYaw = 0;
float magalign_multiplier=0; //how much the magnetometer should influence steering, 0=none, 1=stay aligned float magalign_multiplier = 0; //how much the magnetometer should influence steering, 0=none, 1=stay aligned
//from left to right. pins at bottom. chips on top //from left to right. pins at bottom. chips on top
@ -54,7 +54,7 @@ float magalign_multiplier=0; //how much the magnetometer should influence steeri
#include "nRF24L01.h" #include "nRF24L01.h"
#include "RF24.h" #include "RF24.h"
RF24 radio(PB0,PB1); //ce, cs RF24 radio(PB0, PB1); //ce, cs
//SCK D13 (Pro mini), A5 (bluepill) //SCK D13 (Pro mini), A5 (bluepill)
//Miso D12 (Pro mini), A6 (bluepill) //Miso D12 (Pro mini), A6 (bluepill)
//Mosi D11 (Pro mini), A7 (bluepill) //Mosi D11 (Pro mini), A7 (bluepill)
@ -71,24 +71,25 @@ struct nrfdata {
}; };
nrfdata lastnrfdata; nrfdata lastnrfdata;
long last_nrfreceive=0; //last time values were received and checksum ok long last_nrfreceive = 0; //last time values were received and checksum ok
long nrf_delay=0; long nrf_delay = 0;
#define MAX_NRFDELAY 50 #define MAX_NRFDELAY 100 //ms. maximum time delay at which vehicle will disarm
//command variables //command variables
boolean motorenabled=false; //set by nrfdata.commands boolean motorenabled = false; //set by nrfdata.commands
long last_send=0; long last_send = 0;
int16_t out_steer=0; //between -1000 and 1000 int16_t out_steer = 0; //between -1000 and 1000
int16_t out_speed=0; int16_t out_speed = 0;
uint8_t out_checksum=0; //0= disable motors, 255=reserved, 1<=checksum<255 uint8_t out_checksum = 0; //0= disable motors, 255=reserved, 1<=checksum<255
#define NRFDATA_CENTER 127 #define NRFDATA_CENTER 127
boolean armed=false; boolean armed = false;
boolean lastpacketOK = false;
@ -98,24 +99,24 @@ void setup() {
Serial2.begin(19200); //control. B10=TX3, B11=RX3 (Serial2 is Usart 3) Serial2.begin(19200); //control. B10=TX3, B11=RX3 (Serial2 is Usart 3)
pinMode(PIN_LED, OUTPUT); pinMode(PIN_LED, OUTPUT);
digitalWrite(PIN_LED,HIGH); digitalWrite(PIN_LED, HIGH);
Serial.println("Initializing nrf24"); Serial.println("Initializing nrf24");
radio.begin(); radio.begin();
radio.setDataRate( RF24_250KBPS ); //set to slow data rate. default was 1MBPS radio.setDataRate( RF24_250KBPS ); //set to slow data rate. default was 1MBPS
radio.setChannel(NRF24CHANNEL); //0 to 124 (inclusive) radio.setChannel(NRF24CHANNEL); //0 to 124 (inclusive)
radio.setRetries(15,15); // optionally, increase the delay between retries & # of retries radio.setRetries(15, 15); // optionally, increase the delay between retries & # of retries
radio.setPayloadSize(8); // optionally, reduce the payload size. seems to improve reliability radio.setPayloadSize(8); // optionally, reduce the payload size. seems to improve reliability
radio.openWritingPipe(pipes[0]); //write on pipe 0 radio.openWritingPipe(pipes[0]); //write on pipe 0
radio.openReadingPipe(1,pipes[1]); //read on pipe 1 radio.openReadingPipe(1, pipes[1]); //read on pipe 1
radio.startListening(); radio.startListening();
@ -129,42 +130,44 @@ void setup() {
void loop() { void loop() {
if (millis()-last_imuupdated>IMUUPDATEPERIOD){ if (millis() - last_imuupdated > IMUUPDATEPERIOD) {
updateIMU(); updateIMU();
last_imuupdated=millis(); last_imuupdated = millis();
} }
//NRF24 //NRF24
nrf_delay=millis()-last_nrfreceive; //update nrf delay nrf_delay = millis() - last_nrfreceive; //update nrf delay
if ( radio.available() ) if ( radio.available() )
{ {
//Serial.println("radio available ..."); //Serial.println("radio available ...");
bool done = false; bool done = false;
while (!done) while (!done)
{ {
lastpacketOK = false; //initialize with false, if checksum ok gets set to true
digitalWrite(PIN_LED, !digitalRead(PIN_LED)); digitalWrite(PIN_LED, !digitalRead(PIN_LED));
done = radio.read( &lastnrfdata, sizeof(nrfdata) ); done = radio.read( &lastnrfdata, sizeof(nrfdata) );
if (lastnrfdata.speed==NRFDATA_CENTER && lastnrfdata.speed==NRFDATA_CENTER){ //arm only when centered if (lastnrfdata.speed == NRFDATA_CENTER && lastnrfdata.steer == NRFDATA_CENTER) { //arm only when centered
armed=true; //arm at first received packet armed = true; //arm at first received packet
} }
//parse commands
motorenabled = (lastnrfdata.commands & (1 << 0)); //check bit 0
if (!motorenabled){ //disable motors?
armed=false;
uint8_t calcchecksum = (uint8_t)((lastnrfdata.steer + 3) * (lastnrfdata.speed + 13));
if (lastnrfdata.checksum == calcchecksum) { //checksum ok?
lastpacketOK = true;
last_nrfreceive = millis();
//parse commands
motorenabled = (lastnrfdata.commands & (1 << 0)); //check bit 0
if (!motorenabled) { //disable motors?
armed = false;
}
} }
#ifdef DEBUG
uint8_t calcchecksum=(uint8_t)((lastnrfdata.steer+3)*(lastnrfdata.speed+13));
if (lastnrfdata.checksum!=calcchecksum){ //checksum not ok?
armed=false;
}else{ //checksum ok
last_nrfreceive=millis();
}
#ifdef DEBUG
Serial.print("Received:"); Serial.print("Received:");
Serial.print(" st="); Serial.print(" st=");
Serial.print(lastnrfdata.steer); Serial.print(lastnrfdata.steer);
@ -174,150 +177,165 @@ void loop() {
Serial.print(lastnrfdata.commands); Serial.print(lastnrfdata.commands);
Serial.print(", chks="); Serial.print(", chks=");
Serial.print(lastnrfdata.checksum); Serial.print(lastnrfdata.checksum);
Serial.print("nrfdelay="); Serial.print("nrfdelay=");
Serial.print(nrf_delay); Serial.print(nrf_delay);
#endif Serial.println();
#endif
//y positive = forward //y positive = forward
//x positive = right //x positive = right
/* /*
setYaw+=((int16_t)(lastnrfdata.steer)-NRFDATA_CENTER)*10/127; setYaw+=((int16_t)(lastnrfdata.steer)-NRFDATA_CENTER)*10/127;
while (setYaw<0){ while (setYaw<0){
setYaw+=360; setYaw+=360;
} }
while (setYaw>=360){ while (setYaw>=360){
setYaw-=360; setYaw-=360;
}*/ }*/
/* /*
Serial.print("setYaw="); Serial.print("setYaw=");
Serial.print(setYaw); Serial.print(setYaw);
Serial.print(" Yaw="); Serial.print(" Yaw=");
Serial.println(yaw);*/ Serial.println(yaw);*/
} }
} }
if (error>0){ //disarm if error occured if (error > 0) { //disarm if error occured
armed=false; armed = false;
} }
if (armed && nrf_delay>=MAX_NRFDELAY){ //too long since last sucessful nrf receive if (armed && nrf_delay >= MAX_NRFDELAY) { //too long since last sucessful nrf receive
armed=false; armed = false;
}
if (armed){
if (millis()-last_controlupdate>CONTROLUPDATEPERIOD){
last_controlupdate=millis();
//out_speed=(int16_t)( (lastnrfdata.y-TRACKPOINT_CENTER)*1000/TRACKPOINT_MAX );
//out_steer=(int16_t)( -(lastnrfdata.x-TRACKPOINT_CENTER)*1000/TRACKPOINT_MAX );
out_speed=(int16_t)( ((int16_t)(lastnrfdata.speed)-NRFDATA_CENTER)*1000/127 ); //-1000 to 1000
out_steer=(int16_t)( ((int16_t)(lastnrfdata.steer)-NRFDATA_CENTER)*1000/127 );
//align to compass
double yawdiff=(setYaw-180)-(yaw-180); //following angle difference works only for angles [-180,180]. yaw here is [0,360]
yawdiff += (yawdiff>180) ? -360 : (yawdiff<-180) ? 360 : 0;
//yawdiff/=2;
int yawdiffsign=1;
if (yawdiff<0){
yawdiffsign=-1;
}
yawdiff=yawdiff*yawdiff; //square
yawdiff=constrain(yawdiff*1 ,0,800);
yawdiff*=yawdiffsign; //redo sign
int16_t out_steer_mag=(int16_t)( yawdiff );
float new_magalign_multiplier=map( abs((int16_t)(lastnrfdata.steer)-NRFDATA_CENTER), 2, 10, 1.0, 0.0); //0=normal steering, 1=only mag steering
new_magalign_multiplier=constrain(new_magalign_multiplier, 0.0,1.0);
magalign_multiplier=min(new_magalign_multiplier, min(1.0,magalign_multiplier+0.01)); //go down fast, slowly increase
magalign_multiplier=constrain(magalign_multiplier, 0.0,1.0); //safety constrain again
out_steer = out_steer*(1-magalign_multiplier) + out_steer_mag*magalign_multiplier;
setYaw=setYaw*magalign_multiplier + yaw*(1-magalign_multiplier); //if magalign_multiplier 0, setYaw equals current yaw
/*
Serial.print("Out steer=");
Serial.println(out_steer);*/
}
}else{ //took too long since last nrf data
out_steer=0;
out_speed=0;
setYaw=yaw;
magalign_multiplier=0;
}
if (millis()-last_send>SENDPERIOD){
//calculate checksum
out_checksum = ((uint8_t) ((uint8_t)out_steer)*((uint8_t)out_speed)); //simple checksum
if (out_checksum==0 || out_checksum==255){ out_checksum=1; } //cannot be 0 or 255 (special purpose)
if (!motorenabled){ //disable motors?
out_checksum=0; //checksum=0 disables motors
}
Serial2.write((uint8_t *) &out_steer, sizeof(out_steer));
Serial2.write((uint8_t *) &out_speed, sizeof(out_speed));
Serial2.write((uint8_t *) &out_checksum, sizeof(out_checksum));
last_send=millis();
#ifdef DEBUG #ifdef DEBUG
Serial.print(" steer="); Serial.println("nrf_delay>=MAX_NRFDELAY, disarmed!");
Serial.print(out_steer);
Serial.print(" speed=");
Serial.print(out_speed);
Serial.print(" checksum=");
Serial.print(out_checksum);
Serial.println();
#endif #endif
} }
if (armed) { //is armed
if (lastpacketOK) { //if lastnrfdata is valid
if (millis() - last_controlupdate > CONTROLUPDATEPERIOD) {
last_controlupdate = millis();
//out_speed=(int16_t)( (lastnrfdata.y-TRACKPOINT_CENTER)*1000/TRACKPOINT_MAX );
//out_steer=(int16_t)( -(lastnrfdata.x-TRACKPOINT_CENTER)*1000/TRACKPOINT_MAX );
out_speed = (int16_t)( ((int16_t)(lastnrfdata.speed) - NRFDATA_CENTER) * 1000 / 127 ); //-1000 to 1000
out_steer = (int16_t)( ((int16_t)(lastnrfdata.steer) - NRFDATA_CENTER) * 1000 / 127 );
//align to compass
double yawdiff = (setYaw - 180) - (yaw - 180); //following angle difference works only for angles [-180,180]. yaw here is [0,360]
yawdiff += (yawdiff > 180) ? -360 : (yawdiff < -180) ? 360 : 0;
//yawdiff/=2;
int yawdiffsign = 1;
if (yawdiff < 0) {
yawdiffsign = -1;
}
yawdiff = yawdiff * yawdiff; //square
yawdiff = constrain(yawdiff * 1 , 0, 800);
yawdiff *= yawdiffsign; //redo sign
int16_t out_steer_mag = (int16_t)( yawdiff );
float new_magalign_multiplier = map( abs((int16_t)(lastnrfdata.steer) - NRFDATA_CENTER), 2, 10, 1.0, 0.0); //0=normal steering, 1=only mag steering
new_magalign_multiplier = 0; //Force mag off
new_magalign_multiplier = constrain(new_magalign_multiplier, 0.0, 1.0);
magalign_multiplier = min(new_magalign_multiplier, min(1.0, magalign_multiplier + 0.01)); //go down fast, slowly increase
magalign_multiplier = constrain(magalign_multiplier, 0.0, 1.0); //safety constrain again
out_steer = out_steer * (1 - magalign_multiplier) + out_steer_mag * magalign_multiplier;
setYaw = setYaw * magalign_multiplier + yaw * (1 - magalign_multiplier); //if magalign_multiplier 0, setYaw equals current yaw
/*
Serial.print("Out steer=");
Serial.println(out_steer);*/
}
}//if pastpacket not ok, keep last out_steer and speed values until disarmed
#ifdef DEBUG
if (!lastpacketOK)
Serial.println("Armed but packet not ok");
}
#endif
} else { //disarmed
out_steer = 0;
out_speed = 0;
setYaw = yaw;
magalign_multiplier = 0;
}
if (millis() - last_send > SENDPERIOD) {
//calculate checksum
out_checksum = ((uint8_t) ((uint8_t)out_steer) * ((uint8_t)out_speed)); //simple checksum
if (out_checksum == 0 || out_checksum == 255) {
out_checksum = 1; //cannot be 0 or 255 (special purpose)
}
if (!motorenabled) { //disable motors?
out_checksum = 0; //checksum=0 disables motors
}
Serial2.write((uint8_t *) &out_steer, sizeof(out_steer));
Serial2.write((uint8_t *) &out_speed, sizeof(out_speed));
Serial2.write((uint8_t *) &out_checksum, sizeof(out_checksum));
last_send = millis();
#ifdef DEBUG
Serial.print(" steer=");
Serial.print(out_steer);
Serial.print(" speed=");
Serial.print(out_speed);
Serial.print(" checksum=");
Serial.print(out_checksum);
Serial.println();
#endif
}
} }
void updateIMU() void updateIMU()
{ {
if (old_ax==ax && old_ay==ay && old_az==az && old_gx==gx && old_gy==gy && old_gz==gz && old_mx==mx && old_my==my && old_mz==mz){ if (old_ax == ax && old_ay == ay && old_az == az && old_gx == gx && old_gy == gy && old_gz == gz && old_mx == mx && old_my == my && old_mz == mz) {
imu_no_change_counter++; imu_no_change_counter++;
if (imu_no_change_counter>10){ if (imu_no_change_counter > 10) {
error=IMU_NO_CHANGE; error = IMU_NO_CHANGE;
Serial.println("Error: IMU_NO_CHANGE"); Serial.println("Error: IMU_NO_CHANGE");
} }
}else{ } else {
imu_no_change_counter=0; imu_no_change_counter = 0;
} }
old_ax=ax; old_ax = ax;
old_ay=ay; old_ay = ay;
old_az=az; old_az = az;
old_gx=gx; old_gx = gx;
old_gy=gy; old_gy = gy;
old_gz=gz; old_gz = gz;
old_mx=mx; old_mx = mx;
old_my=my; old_my = my;
old_mz=mz; old_mz = mz;
old_roll=roll; old_roll = roll;
old_pitch=pitch; old_pitch = pitch;
old_yaw=yaw; old_yaw = yaw;
//Update Imu and write to variables //Update Imu and write to variables
imu.update(); imu.update();
imu.getAcceleration(&ax, &ay, &az); imu.getAcceleration(&ax, &ay, &az);
imu.getGyro(&gx, &gy, &gz); imu.getGyro(&gx, &gy, &gz);
imu.getMag(&mx, &my, &mz,&ma); //calibration data such as bias is set in IMUGY85.h imu.getMag(&mx, &my, &mz, &ma); //calibration data such as bias is set in IMUGY85.h
roll = imu.getRoll(); roll = imu.getRoll();
pitch = imu.getPitch(); pitch = imu.getPitch();
yaw = imu.getYaw(); yaw = imu.getYaw();
/*Directions: /*Directions:
* Components on top. Components on top.
* Roll: around Y axis (pointing to the right), left negative Roll: around Y axis (pointing to the right), left negative
* Pitch: around X axis (pointing forward), up positive Pitch: around X axis (pointing forward), up positive
* Yaw: around Z axis, CCW positive, 0 to 360 Yaw: around Z axis, CCW positive, 0 to 360
*/ */
} }