hydroponic-controller/include/ec.h

147 lines
3.1 KiB
C
Raw Normal View History

2023-04-17 19:32:34 +00:00
#ifndef _EC_H_
#define _EC_H_
#include <Arduino.h>
float ecEC_ADS_CHANNEL_mean=0;
bool ec_flag_measurement_available=false;
2023-04-20 21:16:04 +00:00
2023-04-17 19:33:05 +00:00
#define EC_PIN_RELAY_PROBE 27
2023-04-17 19:32:34 +00:00
//#define EC_PIN_ADC 4
#define EC_ADS_CHANNEL 0
2023-04-17 19:32:34 +00:00
#define EC_PIN_FREQ 5
#define EC_PWM_CH 0
#define EC_RESOLUTION 8
#define EC_FREQUENCY 5000
#define EC_ARRAY_SIZE 64
2023-04-28 13:07:47 +00:00
uint16_t ec_array[EC_ARRAY_SIZE];
uint16_t ec_array_pos=EC_ARRAY_SIZE;
unsigned long last_measurement_ec=0;
#define EC_MEASUREMENT_INTERVAL 10000 //complete filtered measurement every x ms
2023-04-20 21:16:04 +00:00
//One filtered measurement takes EC_READ_INTERVAL*EC_ARRAY_SIZE*4
#define EC_READ_INTERVAL 2 //interval of reading adc value inside a measurement
#define EC_RELAY_SWITCH_SETTLETIME 500 //time until voltage of ec circuit has settled
2023-04-20 21:16:04 +00:00
const uint16_t ec_centerADCvalue=1909; //adc value when probe resistance is equal to the range resistor (mean of both)
unsigned long ec_last_change_relay=0; //millis of last relay change
2023-04-20 19:53:41 +00:00
enum ECState{IDLE,MEASURE};
2023-04-20 19:53:41 +00:00
ECState ecstate=IDLE;
2023-04-28 13:07:47 +00:00
float ec_adc;
bool ec_measurementReady();
void ec_startMeasurement();
2023-04-20 21:16:04 +00:00
void ec_setRange(uint8_t range);
void ec_connectProbe(bool);
void ec_releaseRelay();
2023-04-17 19:32:34 +00:00
void ec_setup() {
//pinMode(EC_PIN_ADC,INPUT);
2023-04-17 19:32:34 +00:00
ledcSetup(EC_PWM_CH, EC_FREQUENCY, EC_RESOLUTION);
ledcAttachPin(EC_PIN_FREQ, EC_PWM_CH);
ledcWrite(EC_PWM_CH, 127); //50% duty cycle
2023-04-17 19:32:34 +00:00
2023-04-17 19:33:05 +00:00
pinMode(EC_PIN_RELAY_PROBE,OUTPUT); //LOW=Calibration/idle, HIGH=Probe connected
ec_releaseRelay();
}
void ec_loop(unsigned long loopmillis) {
static unsigned long last_read_ec=0;
switch (ecstate) {
case IDLE:
if (loopmillis>last_measurement_ec+EC_MEASUREMENT_INTERVAL && ecstate==IDLE) { //start measurement if idle
last_measurement_ec=loopmillis;
ec_startMeasurement();
ec_connectProbe(true);
2023-04-28 13:07:47 +00:00
Serial.println("Measuring EC");
ecstate=MEASURE;
}
break;
case MEASURE:
if (ec_measurementReady()) {
ec_releaseRelay();
2023-04-28 13:07:47 +00:00
Serial.println("Finished EC");
ec_adc=getMean(ec_array,EC_ARRAY_SIZE);
2023-04-20 21:16:04 +00:00
ec_flag_measurement_available=true;
2023-04-20 21:16:04 +00:00
2023-04-20 19:53:41 +00:00
ecstate=IDLE;
}
break;
}
2023-04-28 13:07:47 +00:00
if (loopmillis>last_read_ec+EC_READ_INTERVAL && ec_array_pos<EC_ARRAY_SIZE) { //take reading into array if measurement running
last_read_ec=loopmillis;
//flag_print= ec_array_pos==EC_ARRAY_SIZE;
//ec_array_pos%=EC_ARRAY_SIZE;
2023-04-20 21:16:04 +00:00
if (loopmillis>ec_last_change_relay+EC_RELAY_SWITCH_SETTLETIME) { //values have settled
//uint16_t value=analogRead(EC_PIN_ADC);
uint16_t value = ADS.readADC(EC_ADS_CHANNEL);
2023-04-28 13:07:47 +00:00
ec_array[ec_array_pos]=value;
ec_array_pos++;
}
}
}
void ec_startMeasurement() {
ec_array_pos=0;
}
bool ec_measurementReady(){
2023-04-28 13:07:47 +00:00
if (ec_array_pos>=EC_ARRAY_SIZE) { //reached end of both arrays
return true;
}else{
return false;
}
}
void ec_connectProbe(bool relay) {
bool val=digitalRead(EC_PIN_RELAY_PROBE);
if (val!=relay) { //write only if different
digitalWrite(EC_PIN_RELAY_PROBE,relay);
ec_last_change_relay=millis();
}
}
void ec_releaseRelay() {
2023-04-17 19:33:05 +00:00
digitalWrite(EC_PIN_RELAY_PROBE,LOW);
ec_last_change_relay=millis();
2023-04-17 19:32:34 +00:00
}
2023-04-17 19:32:34 +00:00
#endif