hydroponic-controller/include/waterlevel.h

386 lines
11 KiB
C

#ifndef _WATERLEVEL_H_
#define _WATERLEVEL_H_
#include <Wire.h>
#include <VL53L0X.h> //pololu/VL53L0X@^1.3.1
// +++++++++++++++ Common Parameters ++++++++++
#define READINTERVAL_WATERLEVEL 500
#define WATERLEVELMEAN_SIZE 16
#define WATERLEVELMEAN_FILTER_CUTOFF 4 //max value is around WATERLEVELMEAN_SIZE/2
#define WATERLEVEL_UNAVAILABLE -1 //-1 is also timeout value
// +++++++++++++++ VL53L0X +++++++++++++++
VL53L0X sensorA;
#define PIN_VL53L0X_XSHUT_A 19
// Uncomment this line to use long range mode. This
// increases the sensitivity of the sensor and extends its
// potential range, but increases the likelihood of getting
// an inaccurate reading because of reflections from objects
// other than the intended target. It works best in dark
// conditions.
//#define LONG_RANGE
// Uncomment ONE of these two lines to get
// - higher speed at the cost of lower accuracy OR
// - higher accuracy at the cost of lower speed
//#define HIGH_SPEED
#define HIGH_ACCURACY
float waterlevelAMean_array[WATERLEVELMEAN_SIZE];
uint16_t waterlevelAMean_array_pos=0;
float waterlevelA=WATERLEVEL_UNAVAILABLE;
float watervolumeA=WATERLEVEL_UNAVAILABLE;
//Calibration
float waterlevelA_calib_offset=500.0; //c
float waterlevelA_calib_factor=-1.0; //m
float waterlevelA_calib_reservoirArea=20*20*3.1416; //area in cm^2. barrel diameter inside is 400mm
uint16_t distanceA_unsuccessful_count=0;
// +++++++++++++++ VL53L0X +++++++++++++++
VL53L0X sensorB;
#define PIN_VL53L0X_XSHUT_B 23
// Uncomment this line to use long range mode. This
// increases the sensitivity of the sensor and extends its
// potential range, but increases the likelihood of getting
// an inaccurate reading because of reflections from objects
// other than the intended target. It works best in dark
// conditions.
//#define LONG_RANGE
// Uncomment ONE of these two lines to get
// - higher speed at the cost of lower accuracy OR
// - higher accuracy at the cost of lower speed
//#define HIGH_SPEED
#define HIGH_ACCURACY
float waterlevelBMean_array[WATERLEVELMEAN_SIZE];
uint16_t waterlevelBMean_array_pos=0;
float waterlevelB=WATERLEVEL_UNAVAILABLE; //distance from floor to water surface [mm]
float watervolumeB=WATERLEVEL_UNAVAILABLE; //calculated Volume in Reservoir
//Calibration
float waterlevelB_calib_offset=273.0; //c
float waterlevelB_calib_factor=-1.0; //m
float waterlevelB_calib_reservoirArea=56.5*36.5; //area in cm^2
uint16_t distanceB_unsuccessful_count=0;
float waterlevelA_heightToVolume(float distance);
float waterlevelB_heightToVolume(float distance);
mqttValueTiming timing_waterlevelA;
mqttValueTiming timing_waterlevelB;
void waterlevel_shutdownSensors() {
pinMode(PIN_VL53L0X_XSHUT_A, OUTPUT);
digitalWrite(PIN_VL53L0X_XSHUT_A, LOW); //pull to GND
pinMode(PIN_VL53L0X_XSHUT_B, OUTPUT);
digitalWrite(PIN_VL53L0X_XSHUT_B, LOW); //pull to GND
}
void waterlevel_enableSensor(uint8_t sensorid) {
switch (sensorid){
case 0:
pinMode(PIN_VL53L0X_XSHUT_A, INPUT); //Enable Sensor A
break;
case 1:
pinMode(PIN_VL53L0X_XSHUT_B, INPUT); //Enable Sensor B
break;
}
}
void waterlevel_setup() {
waterlevel_shutdownSensors();
delay(100);
/*
Wire.begin();
byte error, address;
int nDevices;
delay(500);
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknown error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
*/
timing_waterlevelA.minchange=0.0;
timing_waterlevelA.maxchange=3.0;
timing_waterlevelA.mintime=30*000;
timing_waterlevelA.maxtime=60*60*1000;
timing_waterlevelB.minchange=0.0;
timing_waterlevelB.maxchange=0.5;
timing_waterlevelB.mintime=10*000;
timing_waterlevelB.maxtime=60*60*1000;
waterlevel_enableSensor(1); //1==B //Enable Sensor B first, to change its address
delay(50);
Wire.begin(21,22);
Serial.print("I2C Clock Speed=");
Serial.println(Wire.getClock());
delay(100);
//Initialize SensorB first
sensorB.setTimeout(2000);
if (!sensorB.init())
{
Serial.println("Failed to detect and initialize sensorB!");
publishInfo("error/waterlevel","Failed to detect and initialize sensorB");
delay(1000);
}
Serial.println("set addr 0x2A");
sensorB.setAddress(0x2A); //change address
Serial.println("conf Default");
#if defined LONG_RANGE
// lower the return signal rate limit (default is 0.25 MCPS)
sensorB.setSignalRateLimit(0.1);
// increase laser pulse periods (defaults are 14 and 10 PCLKs)
sensorB.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18);
sensorB.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14);
#endif
#if defined HIGH_SPEED
// reduce timing budget to 20 ms (default is about 33 ms)
sensorB.setMeasurementTimingBudget(20000);
#elif defined HIGH_ACCURACY
// increase timing budget to 200 ms
sensorB.setMeasurementTimingBudget(200000);
#endif
// Stop driving this sensor's XSHUT low. This should allow the carrier
// board to pull it high. (We do NOT want to drive XSHUT high since it is
// not level shifted.) Then wait a bit for the sensor to start up.
waterlevel_enableSensor(0);
delay(50);
//Initialize Sensor A after SensorB's address was changed
sensorA.setTimeout(2000);
if (!sensorA.init())
{
Serial.println("Failed to detect and initialize sensorA!");
publishInfo("error/waterlevel","Failed to detect and initialize sensorA");
delay(1000);
}
#if defined LONG_RANGE
// lower the return signal rate limit (default is 0.25 MCPS)
sensorA.setSignalRateLimit(0.1);
// increase laser pulse periods (defaults are 14 and 10 PCLKs)
sensorA.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18);
sensorA.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14);
#endif
#if defined HIGH_SPEED
// reduce timing budget to 20 ms (default is about 33 ms)
sensorA.setMeasurementTimingBudget(20000);
#elif defined HIGH_ACCURACY
// increase timing budget to 200 ms
sensorA.setMeasurementTimingBudget(200000);
#endif
for (uint16_t i=0;i<WATERLEVELMEAN_SIZE;i++) {
waterlevelAMean_array[i]=WATERLEVEL_UNAVAILABLE; //-1 is also timeout value
waterlevelBMean_array[i]=WATERLEVEL_UNAVAILABLE; //-1 is also timeout value
}
}
void waterlevel_loop(unsigned long loopmillis) {
static uint8_t waterlevel_loop_select=0;
switch(waterlevel_loop_select)
{
case 0:
// ############ A
static unsigned long last_read_waterlevelA;
if (loopmillis>=last_read_waterlevelA+READINTERVAL_WATERLEVEL) {
last_read_waterlevelA=loopmillis;
uint16_t distance=sensorA.readRangeSingleMillimeters(); //error=65535
//Serial.print("Distance reading A="); Serial.print(distance);Serial.println();
if (distance!=WATERLEVEL_UNAVAILABLE && distance!=65535) { //successful
waterlevelAMean_array[waterlevelAMean_array_pos]=distance;
waterlevelAMean_array_pos++;
waterlevelAMean_array_pos%=WATERLEVELMEAN_SIZE;
distanceA_unsuccessful_count=0;
}else{
distanceA_unsuccessful_count++;
if (distanceA_unsuccessful_count%20==0) {
String _text="Distance A unsuccessful count=";
_text.concat(distanceA_unsuccessful_count);
_text.concat(" distance=");
_text.concat(distance);
publishInfo("error/waterlevel",_text);
}
}
if (isValueArrayOKf(waterlevelAMean_array,WATERLEVELMEAN_SIZE,WATERLEVEL_UNAVAILABLE)){
float _filteredDistance=getFilteredf(waterlevelAMean_array,WATERLEVELMEAN_SIZE,WATERLEVELMEAN_FILTER_CUTOFF);
//Serial.print("Filtered reading A="); Serial.print(_filteredDistance);Serial.println();
//Invert distance and offset
waterlevelA=constrain(waterlevelA_calib_offset+waterlevelA_calib_factor*_filteredDistance,0,1000);
watervolumeA=waterlevelA_heightToVolume(waterlevelA);
//float _meanWaterlevel=getMeanf(waterlevelMean,WATERLEVELMEAN_SIZE);
//Serial.print("\t Dist="); Serial.print(_filteredWaterlevel); Serial.print("mm"); Serial.print("(+- "); Serial.print((getMaxf(waterlevelMean,WATERLEVELMEAN_SIZE)-getMinf(waterlevelMean,WATERLEVELMEAN_SIZE))/2.0); Serial.print(")"); Serial.print(" [mean="); Serial.print(_meanWaterlevel); Serial.print("]");
}else{
waterlevelA=WATERLEVEL_UNAVAILABLE;
}
}
waterlevel_loop_select++;
break;
case 1:
// ############ B
static unsigned long last_read_waterlevelB;
if (loopmillis>=last_read_waterlevelB+READINTERVAL_WATERLEVEL) {
last_read_waterlevelB=loopmillis;
uint16_t distance=sensorB.readRangeSingleMillimeters(); //out of range =255
//Serial.print("Distance reading B="); Serial.print(distance);Serial.println();
if (distance!=WATERLEVEL_UNAVAILABLE && distance!=65535) { //successful
waterlevelBMean_array[waterlevelBMean_array_pos]=distance;
waterlevelBMean_array_pos++;
waterlevelBMean_array_pos%=WATERLEVELMEAN_SIZE;
distanceB_unsuccessful_count=0;
}else{
distanceB_unsuccessful_count++;
if (distanceB_unsuccessful_count%20==0) {
String _text="Distance B unsuccessful count=";
_text.concat(distanceB_unsuccessful_count);
_text.concat(" distance=");
_text.concat(distance);
publishInfo("error/waterlevel",_text);
}
}
if (isValueArrayOKf(waterlevelBMean_array,WATERLEVELMEAN_SIZE,WATERLEVEL_UNAVAILABLE)){
float _filteredDistance=getFilteredf(waterlevelBMean_array,WATERLEVELMEAN_SIZE,WATERLEVELMEAN_FILTER_CUTOFF);
//Invert distance and offset
waterlevelB=constrain(waterlevelB_calib_offset+waterlevelB_calib_factor*_filteredDistance,0,1000);
watervolumeB=waterlevelB_heightToVolume(waterlevelB);
//Serial.print("Filtered reading B="); Serial.print(_filteredDistance); Serial.print(" fixed="); Serial.println(waterlevelB); Serial.println();
//float _meanWaterlevel=getMeanf(waterlevelMean,WATERLEVELMEAN_SIZE);
//Serial.print("\t Dist="); Serial.print(_filteredWaterlevel); Serial.print("mm"); Serial.print("(+- "); Serial.print((getMaxf(waterlevelMean,WATERLEVELMEAN_SIZE)-getMinf(waterlevelMean,WATERLEVELMEAN_SIZE))/2.0); Serial.print(")"); Serial.print(" [mean="); Serial.print(_meanWaterlevel); Serial.print("]");
}else{
waterlevelB=WATERLEVEL_UNAVAILABLE;
}
waterlevel_loop_select=0;
break;
}
}
}
float waterlevelA_heightToVolume(float distance){
return waterlevelA_calib_reservoirArea/100 * distance/100; //area[cm^2] in dm^2 * height in dm = dm^3= L
}
float waterlevelB_heightToVolume(float distance){
return waterlevelB_calib_reservoirArea/100 * distance/100; //area[cm^2] in dm^2 * height in dm = dm^3= L
}
#endif